test_pipelines_image_classification.py 8.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
20
21
22
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    PreTrainedTokenizer,
    is_vision_available,
)
23
from transformers.pipelines import ImageClassificationPipeline, pipeline
24
25
26
27
from transformers.testing_utils import (
    nested_simplify,
    require_tf,
    require_torch,
28
    require_torch_or_tf,
29
    require_vision,
30
    slow,
31
32
33
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta
34
35
36
37
38
39
40
41
42
43
44
45


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


46
@require_torch_or_tf
47
@require_vision
48
49
class ImageClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
50
    tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
51

52
53
    def get_test_pipeline(self, model, tokenizer, processor):
        image_classifier = ImageClassificationPipeline(model=model, feature_extractor=processor, top_k=2)
54
55
56
57
58
59
60
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        ]
        return image_classifier, examples

    def run_pipeline_test(self, image_classifier, examples):
61
62
63
64
65
66
67
68
69
70
71
72
        outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")

        self.assertEqual(
            outputs,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        import datasets

73
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
74
75
76
77

        # Accepts URL + PIL.Image + lists
        outputs = image_classifier(
            [
NielsRogge's avatar
NielsRogge committed
78
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
79
80
81
82
83
84
85
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                # RGBA
                dataset[0]["file"],
                # LA
                dataset[1]["file"],
                # L
                dataset[2]["file"],
NielsRogge's avatar
NielsRogge committed
86
            ]
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
            ],
        )

    @require_torch
    def test_small_model_pt(self):
Lysandre Debut's avatar
Lysandre Debut committed
116
        small_model = "hf-internal-testing/tiny-random-vit"
117
118
119
120
121
        image_classifier = pipeline("image-classification", model=small_model)

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
Lysandre Debut's avatar
Lysandre Debut committed
122
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
123
124
125
126
127
128
129
130
131
132
133
134
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
Lysandre Debut's avatar
Lysandre Debut committed
135
136
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
137
138
139
140
141
            ],
        )

    @require_tf
    def test_small_model_tf(self):
Lysandre Debut's avatar
Lysandre Debut committed
142
        small_model = "hf-internal-testing/tiny-random-vit"
143
        image_classifier = pipeline("image-classification", model=small_model, framework="tf")
144
145
146
147

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
Lysandre Debut's avatar
Lysandre Debut committed
148
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
149
150
151
152
153
154
155
156
157
158
159
160
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
Lysandre Debut's avatar
Lysandre Debut committed
161
162
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
163
164
            ],
        )
165
166
167
168
169

    def test_custom_tokenizer(self):
        tokenizer = PreTrainedTokenizer()

        # Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
Lysandre Debut's avatar
Lysandre Debut committed
170
171
172
        image_classifier = pipeline(
            "image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer
        )
173
174

        self.assertIs(image_classifier.tokenizer, tokenizer)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    @slow
    @require_torch
    def test_perceiver(self):
        # Perceiver is not tested by `run_pipeline_test` properly.
        # That is because the type of feature_extractor and model preprocessor need to be kept
        # in sync, which is not the case in the current design
        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.4385, "label": "tabby, tabby cat"},
                {"score": 0.321, "label": "tiger cat"},
                {"score": 0.0502, "label": "Egyptian cat"},
                {"score": 0.0137, "label": "crib, cot"},
                {"score": 0.007, "label": "radiator"},
            ],
        )

        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.5658, "label": "tabby, tabby cat"},
                {"score": 0.1309, "label": "tiger cat"},
                {"score": 0.0722, "label": "Egyptian cat"},
                {"score": 0.0707, "label": "remote control, remote"},
                {"score": 0.0082, "label": "computer keyboard, keypad"},
            ],
        )

        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.3022, "label": "tabby, tabby cat"},
                {"score": 0.2362, "label": "Egyptian cat"},
                {"score": 0.1856, "label": "tiger cat"},
                {"score": 0.0324, "label": "remote control, remote"},
                {"score": 0.0096, "label": "quilt, comforter, comfort, puff"},
            ],
        )