test_pipelines_image_classification.py 8.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
20
    PreTrainedTokenizerBase,
21
22
    is_vision_available,
)
23
from transformers.pipelines import ImageClassificationPipeline, pipeline
24
from transformers.testing_utils import (
25
    is_pipeline_test,
26
27
28
    nested_simplify,
    require_tf,
    require_torch,
29
    require_torch_or_tf,
30
    require_vision,
31
    slow,
32
33
)

34
from .test_pipelines_common import ANY
35
36
37
38
39
40
41
42
43
44
45
46


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


47
@is_pipeline_test
48
@require_torch_or_tf
49
@require_vision
50
class ImageClassificationPipelineTests(unittest.TestCase):
51
    model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
52
    tf_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
53

54
    def get_test_pipeline(self, model, tokenizer, processor):
Yih-Dar's avatar
Yih-Dar committed
55
        image_classifier = ImageClassificationPipeline(model=model, image_processor=processor, top_k=2)
56
57
58
59
60
61
62
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        ]
        return image_classifier, examples

    def run_pipeline_test(self, image_classifier, examples):
63
64
65
66
67
68
69
70
71
72
73
74
        outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")

        self.assertEqual(
            outputs,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        import datasets

75
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
76
77
78
79

        # Accepts URL + PIL.Image + lists
        outputs = image_classifier(
            [
NielsRogge's avatar
NielsRogge committed
80
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
81
82
83
84
85
86
87
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                # RGBA
                dataset[0]["file"],
                # LA
                dataset[1]["file"],
                # L
                dataset[2]["file"],
NielsRogge's avatar
NielsRogge committed
88
            ]
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
            ],
        )

    @require_torch
    def test_small_model_pt(self):
Lysandre Debut's avatar
Lysandre Debut committed
118
        small_model = "hf-internal-testing/tiny-random-vit"
119
120
121
122
123
        image_classifier = pipeline("image-classification", model=small_model)

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
Lysandre Debut's avatar
Lysandre Debut committed
124
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
125
126
127
128
129
130
131
132
133
134
135
136
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
Lysandre Debut's avatar
Lysandre Debut committed
137
138
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
139
140
141
142
143
            ],
        )

    @require_tf
    def test_small_model_tf(self):
Lysandre Debut's avatar
Lysandre Debut committed
144
        small_model = "hf-internal-testing/tiny-random-vit"
145
        image_classifier = pipeline("image-classification", model=small_model, framework="tf")
146
147
148
149

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
Lysandre Debut's avatar
Lysandre Debut committed
150
            [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
151
152
153
154
155
156
157
158
159
160
161
162
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
Lysandre Debut's avatar
Lysandre Debut committed
163
164
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
                [{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
165
166
            ],
        )
167
168

    def test_custom_tokenizer(self):
169
        tokenizer = PreTrainedTokenizerBase()
170
171

        # Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
Lysandre Debut's avatar
Lysandre Debut committed
172
173
174
        image_classifier = pipeline(
            "image-classification", model="hf-internal-testing/tiny-random-vit", tokenizer=tokenizer
        )
175
176

        self.assertIs(image_classifier.tokenizer, tokenizer)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    @slow
    @require_torch
    def test_perceiver(self):
        # Perceiver is not tested by `run_pipeline_test` properly.
        # That is because the type of feature_extractor and model preprocessor need to be kept
        # in sync, which is not the case in the current design
        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-conv")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.4385, "label": "tabby, tabby cat"},
                {"score": 0.321, "label": "tiger cat"},
                {"score": 0.0502, "label": "Egyptian cat"},
                {"score": 0.0137, "label": "crib, cot"},
                {"score": 0.007, "label": "radiator"},
            ],
        )

        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-fourier")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.5658, "label": "tabby, tabby cat"},
                {"score": 0.1309, "label": "tiger cat"},
                {"score": 0.0722, "label": "Egyptian cat"},
                {"score": 0.0707, "label": "remote control, remote"},
                {"score": 0.0082, "label": "computer keyboard, keypad"},
            ],
        )

        image_classifier = pipeline("image-classification", model="deepmind/vision-perceiver-learned")
        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.3022, "label": "tabby, tabby cat"},
                {"score": 0.2362, "label": "Egyptian cat"},
                {"score": 0.1856, "label": "tiger cat"},
                {"score": 0.0324, "label": "remote control, remote"},
                {"score": 0.0096, "label": "quilt, comforter, comfort, puff"},
            ],
        )