modeling_xxx.py 31.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# coding=utf-8
# Copyright 2018 XXX Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XXX model. """

####################################################
# In this template, replace all the XXX (various casings) with your model name
####################################################


import logging
import os

import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss

from .configuration_xxx import XxxConfig
30
31
32
33
34
35
36
37
38
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .modeling_outputs import (
    BaseModelOutputWithPooling,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
39
from .modeling_utils import PreTrainedModel
Aymeric Augustin's avatar
Aymeric Augustin committed
40

thomwolf's avatar
thomwolf committed
41
42
43

logger = logging.getLogger(__name__)

44
45
46
_CONFIG_FOR_DOC = "XXXConfig"
_TOKENIZER_FOR_DOC = "XXXTokenizer"

thomwolf's avatar
thomwolf committed
47
####################################################
48
49
# This list contrains shortcut names for some of
# the pretrained weights provided with the models
thomwolf's avatar
thomwolf committed
50
####################################################
51
52
53
54
XXX_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "xxx-base-uncased",
    "xxx-large-uncased",
]
thomwolf's avatar
thomwolf committed
55

56

thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
63
64
65
66
67
68
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_xxx(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model.
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
69
70
71
72
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
87
        name = name.split("/")
thomwolf's avatar
thomwolf committed
88
89
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
90
91
92
93
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
thomwolf's avatar
thomwolf committed
94
95
96
97
            logger.info("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
98
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
99
                scope_names = re.split(r"_(\d+)", m_name)
thomwolf's avatar
thomwolf committed
100
            else:
101
102
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
103
                pointer = getattr(pointer, "weight")
104
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
105
                pointer = getattr(pointer, "bias")
106
            elif scope_names[0] == "output_weights":
107
                pointer = getattr(pointer, "weight")
108
            elif scope_names[0] == "squad":
109
                pointer = getattr(pointer, "classifier")
thomwolf's avatar
thomwolf committed
110
111
            else:
                try:
112
                    pointer = getattr(pointer, scope_names[0])
thomwolf's avatar
thomwolf committed
113
114
115
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
116
117
            if len(scope_names) >= 2:
                num = int(scope_names[1])
thomwolf's avatar
thomwolf committed
118
                pointer = pointer[num]
119
120
121
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
Julien Chaumond's avatar
Julien Chaumond committed
136
# - PreTrainedModel for the models (itself a sub-class of torch.nn.Module)
thomwolf's avatar
thomwolf committed
137
138
139
140
141
142
143
144
####################################################

####################################################
# Here is an example of typical layer in a PyTorch model of the library
# The classes are usually identical to the TF 2.0 ones without the 'TF' prefix.
#
# See the conversion methods in modeling_tf_pytorch_utils.py for more details
####################################################
145
146
147
148
149
150
151
152

XxxAttention = nn.Module

XxxIntermediate = nn.Module

XxxOutput = nn.Module


thomwolf's avatar
thomwolf committed
153
154
class XxxLayer(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
155
        super().__init__()
thomwolf's avatar
thomwolf committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        self.attention = XxxAttention(config)
        self.intermediate = XxxIntermediate(config)
        self.output = XxxOutput(config)

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


####################################################
# PreTrainedModel is a sub-class of torch.nn.Module
# which take care of loading and saving pretrained weights
# and various common utilities.
#
# Here you just need to specify a few (self-explanatory)
# pointers for your model and the weights initialization
# method if its not fully covered by PreTrainedModel's default method
####################################################
178
179
180
181
182
183
184
185
186
187

XxxLayerNorm = torch.nn.LayerNorm

XxxEmbeddings = nn.Module

XxxEncoder = nn.Module

XxxPooler = nn.Module


thomwolf's avatar
thomwolf committed
188
189
class XxxPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
190
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
191
    """
192

thomwolf's avatar
thomwolf committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    config_class = XxxConfig
    load_tf_weights = load_tf_weights_in_xxx
    base_model_prefix = "transformer"

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XxxLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


XXX_START_DOCSTRING = r"""    The XXX model was proposed in
211
212
    `XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding
    <https://arxiv.org/abs/1810.04805>`__ by....
thomwolf's avatar
thomwolf committed
213

214
215
216
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.
thomwolf's avatar
thomwolf committed
217
218

    Parameters:
219
        config (:class:`~transformers.XxxConfig`): Model configuration class with all the parameters of the model.
thomwolf's avatar
thomwolf committed
220
221
222
223
224
225
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

XXX_INPUTS_DOCSTRING = r"""
    Inputs:
226
        input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
thomwolf's avatar
thomwolf committed
227
228
229
230
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.XxxTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
231
232
233
234
            :func:`transformers.PreTrainedTokenizer.__call__` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
235
236
237
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
238
239
240

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
241
242
243
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
244
245
246

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
247
248
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
249
250
251

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
252
253
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
254
255
256
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
257
258
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
259
260
261
262
263
264
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
        return_tuple (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the output of the model will be a plain tuple instead of a ``dataclass``.
thomwolf's avatar
thomwolf committed
265
266
"""

267
268

@add_start_docstrings(
269
    "The bare XXX Model transformer outputting raw hidden-states without any specific head on top.",
270
271
    XXX_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
272
273
class XxxModel(XxxPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
274
        super().__init__(config)
thomwolf's avatar
thomwolf committed
275
276
277
278
279
280
281

        self.embeddings = XxxEmbeddings(config)
        self.encoder = XxxEncoder(config)
        self.pooler = XxxPooler(config)

        self.init_weights()

thomwolf's avatar
thomwolf committed
282
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
283
284
        return self.embeddings.word_embeddings

thomwolf's avatar
thomwolf committed
285
    def set_input_embeddings(self, new_embeddings):
286
287
        self.embeddings.word_embeddings = new_embeddings

thomwolf's avatar
thomwolf committed
288
289
290
291
292
293
294
295
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

296
297
298
299
300
301
302
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
    )
303
304
305
306
307
308
309
310
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
311
312
313
        output_attentions=None,
        output_hidden_states=None,
        return_tuple=None,
314
    ):
315
316
317
318
319
320
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_tuple = return_tuple if return_tuple is not None else self.config.use_return_tuple

Julien Chaumond's avatar
Julien Chaumond committed
321
322
323
324
325
326
327
328
329
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

Julien Chaumond's avatar
Julien Chaumond committed
330
331
        device = input_ids.device if input_ids is not None else inputs_embeds.device

thomwolf's avatar
thomwolf committed
332
        if attention_mask is None:
Julien Chaumond's avatar
Julien Chaumond committed
333
            attention_mask = torch.ones(input_shape, device=device)
thomwolf's avatar
thomwolf committed
334
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
335
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
336

337
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
thomwolf's avatar
thomwolf committed
338
339
340
341
342
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
343
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
thomwolf's avatar
thomwolf committed
344
345
346

        ##################################
        # Replace this with your model code
347
348
349
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
thomwolf's avatar
thomwolf committed
350
351
        encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask)
        sequence_output = encoder_outputs[0]
352
        pooled_output = self.pooler(sequence_output)
thomwolf's avatar
thomwolf committed
353

354
355
        if return_tuple:
            return (sequence_output, pooled_output) + encoder_outputs[1:]
thomwolf's avatar
thomwolf committed
356

357
358
359
360
361
362
        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
363

364

365
366
@add_start_docstrings("""XXX Model with a `language modeling` head on top. """, XXX_START_DOCSTRING)
class XxxForMaskedLM(XxxPreTrainedModel):
thomwolf's avatar
thomwolf committed
367
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
368
        super().__init__(config)
thomwolf's avatar
thomwolf committed
369
370

        self.transformer = XxxModel(config)
371
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
thomwolf's avatar
thomwolf committed
372
373
374

        self.init_weights()

thomwolf's avatar
thomwolf committed
375
    def get_output_embeddings(self):
376
        return self.lm_head
thomwolf's avatar
thomwolf committed
377

378
379
380
381
382
383
384
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
385
386
387
388
389
390
391
392
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
393
394
395
396
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_tuple=None,
397
    ):
398
399
400
401
402
403
404
405
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        """
        return_tuple = return_tuple if return_tuple is not None else self.config.use_return_tuple
406
407
408
409
410
411
412
413

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
414
415
416
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_tuple=return_tuple,
417
        )
thomwolf's avatar
thomwolf committed
418
419
420
421

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if return_tuple:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
437
438


439
@add_start_docstrings(
440
    """XXX Model transformer with a sequence classification/regression head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
441
    the pooled output) e.g. for GLUE tasks. """,
442
443
    XXX_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
444
445
class XxxForSequenceClassification(XxxPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
446
        super().__init__(config)
thomwolf's avatar
thomwolf committed
447
448
449
450
451
452
453
454
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

455
456
457
458
459
460
461
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
462
463
464
465
466
467
468
469
470
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
471
472
473
        output_attentions=None,
        output_hidden_states=None,
        return_tuple=None,
474
    ):
475
476
477
478
479
480
481
482
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_tuple = return_tuple if return_tuple is not None else self.config.use_return_tuple
483
484
485
486
487
488
489
490

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
491
492
493
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_tuple=return_tuple,
494
        )
thomwolf's avatar
thomwolf committed
495
496
497
498
499
500

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

501
        loss = None
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

511
512
513
514
515
516
517
        if return_tuple:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
518
519


520
@add_start_docstrings(
521
522
    """XXX Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
523
524
    XXX_START_DOCSTRING,
)
525
526
527
class XxxForMultipleChoice(XxxPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
thomwolf's avatar
thomwolf committed
528

529
530
531
        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        self.init_weights()

    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_tuple=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
        """
        return_tuple = return_tuple if return_tuple is not None else self.config.use_return_tuple
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_tuple=return_tuple,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

        if return_tuple:
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
604

605
606
607
608
609
610
611

@add_start_docstrings(
    """XXX Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    XXX_START_DOCSTRING,
)
class XxxForTokenClassification(XxxPreTrainedModel):
thomwolf's avatar
thomwolf committed
612
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
613
        super().__init__(config)
thomwolf's avatar
thomwolf committed
614
615
616
617
618
619
620
621
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

622
623
624
625
626
627
628
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
629
630
631
632
633
634
635
636
637
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
638
639
640
        output_attentions=None,
        output_hidden_states=None,
        return_tuple=None,
641
    ):
642
643
644
645
646
647
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
        """
        return_tuple = return_tuple if return_tuple is not None else self.config.use_return_tuple
648
649
650
651
652
653
654
655

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
656
657
658
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_tuple=return_tuple,
659
        )
thomwolf's avatar
thomwolf committed
660
661
662
663
664
665

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

666
        loss = None
thomwolf's avatar
thomwolf committed
667
668
669
670
671
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
672
673
674
675
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
thomwolf's avatar
thomwolf committed
676
677
678
679
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

680
681
682
683
684
685
686
        if return_tuple:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
687
688


689
@add_start_docstrings(
690
691
    """XXX Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
692
693
    XXX_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
694
695
class XxxForQuestionAnswering(XxxPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
696
        super().__init__(config)
thomwolf's avatar
thomwolf committed
697
698
699
700
701
702
703
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

704
705
706
707
708
709
710
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
711
712
713
714
715
716
717
718
719
720
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
721
722
723
        output_attentions=None,
        output_hidden_states=None,
        return_tuple=None,
724
    ):
725
726
727
728
729
730
731
732
733
734
735
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        """
        return_tuple = return_tuple if return_tuple is not None else self.config.use_return_tuple
736
737
738
739
740
741
742
743

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
744
745
746
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_tuple=return_tuple,
747
        )
thomwolf's avatar
thomwolf committed
748
749
750
751
752
753
754
755

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

756
        total_loss = None
thomwolf's avatar
thomwolf committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

773
774
775
776
777
778
779
780
781
782
783
        if return_tuple:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )