modeling_xxx.py 32.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 XXX Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XXX model. """

####################################################
# In this template, replace all the XXX (various casings) with your model name
####################################################


import logging
import os

import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss

from .configuration_xxx import XxxConfig
from .file_utils import add_start_docstrings
31
from .modeling_utils import PreTrainedModel
Aymeric Augustin's avatar
Aymeric Augustin committed
32

thomwolf's avatar
thomwolf committed
33
34
35
36

logger = logging.getLogger(__name__)

####################################################
37
38
# This list contrains shortcut names for some of
# the pretrained weights provided with the models
thomwolf's avatar
thomwolf committed
39
####################################################
40
41
42
43
XXX_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "xxx-base-uncased",
    "xxx-large-uncased",
]
thomwolf's avatar
thomwolf committed
44

45

thomwolf's avatar
thomwolf committed
46
47
48
49
50
51
52
53
54
55
56
57
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_xxx(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model.
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
58
59
60
61
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
thomwolf's avatar
thomwolf committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
76
        name = name.split("/")
thomwolf's avatar
thomwolf committed
77
78
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
79
80
81
82
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
thomwolf's avatar
thomwolf committed
83
84
85
86
            logger.info("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
87
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
88
                scope_names = re.split(r"_(\d+)", m_name)
thomwolf's avatar
thomwolf committed
89
            else:
90
91
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
92
                pointer = getattr(pointer, "weight")
93
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
94
                pointer = getattr(pointer, "bias")
95
            elif scope_names[0] == "output_weights":
96
                pointer = getattr(pointer, "weight")
97
            elif scope_names[0] == "squad":
98
                pointer = getattr(pointer, "classifier")
thomwolf's avatar
thomwolf committed
99
100
            else:
                try:
101
                    pointer = getattr(pointer, scope_names[0])
thomwolf's avatar
thomwolf committed
102
103
104
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
105
106
            if len(scope_names) >= 2:
                num = int(scope_names[1])
thomwolf's avatar
thomwolf committed
107
                pointer = pointer[num]
108
109
110
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
thomwolf's avatar
thomwolf committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
Julien Chaumond's avatar
Julien Chaumond committed
125
# - PreTrainedModel for the models (itself a sub-class of torch.nn.Module)
thomwolf's avatar
thomwolf committed
126
127
128
129
130
131
132
133
####################################################

####################################################
# Here is an example of typical layer in a PyTorch model of the library
# The classes are usually identical to the TF 2.0 ones without the 'TF' prefix.
#
# See the conversion methods in modeling_tf_pytorch_utils.py for more details
####################################################
134
135
136
137
138
139
140
141

XxxAttention = nn.Module

XxxIntermediate = nn.Module

XxxOutput = nn.Module


thomwolf's avatar
thomwolf committed
142
143
class XxxLayer(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
144
        super().__init__()
thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        self.attention = XxxAttention(config)
        self.intermediate = XxxIntermediate(config)
        self.output = XxxOutput(config)

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


####################################################
# PreTrainedModel is a sub-class of torch.nn.Module
# which take care of loading and saving pretrained weights
# and various common utilities.
#
# Here you just need to specify a few (self-explanatory)
# pointers for your model and the weights initialization
# method if its not fully covered by PreTrainedModel's default method
####################################################
167
168
169
170
171
172
173
174
175
176

XxxLayerNorm = torch.nn.LayerNorm

XxxEmbeddings = nn.Module

XxxEncoder = nn.Module

XxxPooler = nn.Module


thomwolf's avatar
thomwolf committed
177
178
class XxxPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
179
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
180
    """
181

thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    config_class = XxxConfig
    load_tf_weights = load_tf_weights_in_xxx
    base_model_prefix = "transformer"

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XxxLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


XXX_START_DOCSTRING = r"""    The XXX model was proposed in
    `XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
    by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
    pre-trained using a combination of masked language modeling objective and next sentence prediction
    on a large corpus comprising the Toronto Book Corpus and Wikipedia.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
        https://arxiv.org/abs/1810.04805

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
215
        config (:class:`~transformers.XxxConfig`): Model configuration class with all the parameters of the model.
thomwolf's avatar
thomwolf committed
216
217
218
219
220
221
222
223
224
225
226
227
228
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

XXX_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, XXX input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
229

thomwolf's avatar
thomwolf committed
230
231
232
233
234
                ``token_type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``
235

thomwolf's avatar
thomwolf committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                ``token_type_ids:   0   0   0   0  0     0   0``

            Xxx is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

            Indices can be obtained using :class:`transformers.XxxTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            (see `XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
260
261
262
263
        **inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
            Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
thomwolf's avatar
thomwolf committed
264
265
"""

266
267
268
269
270
271

@add_start_docstrings(
    "The bare Xxx Model transformer outputting raw hidden-states without any specific head on top.",
    XXX_START_DOCSTRING,
    XXX_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class XxxModel(XxxPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Xxx pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
288
        **attentions**: (`optional`, returned when ``output_attentions=True``)
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
297
298
299
300
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = XxxTokenizer.from_pretrained('xxx-base-uncased')
        model = XxxModel.from_pretrained('xxx-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
301

thomwolf's avatar
thomwolf committed
302
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
303
        super().__init__(config)
thomwolf's avatar
thomwolf committed
304
305
306
307
308
309
310

        self.embeddings = XxxEmbeddings(config)
        self.encoder = XxxEncoder(config)
        self.pooler = XxxPooler(config)

        self.init_weights()

thomwolf's avatar
thomwolf committed
311
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
312
313
        return self.embeddings.word_embeddings

thomwolf's avatar
thomwolf committed
314
    def set_input_embeddings(self, new_embeddings):
315
316
        self.embeddings.word_embeddings = new_embeddings

thomwolf's avatar
thomwolf committed
317
318
319
320
321
322
323
324
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

325
326
327
328
329
330
331
332
333
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
    ):
Julien Chaumond's avatar
Julien Chaumond committed
334
335
336
337
338
339
340
341
342
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

Julien Chaumond's avatar
Julien Chaumond committed
343
344
        device = input_ids.device if input_ids is not None else inputs_embeds.device

thomwolf's avatar
thomwolf committed
345
        if attention_mask is None:
Julien Chaumond's avatar
Julien Chaumond committed
346
            attention_mask = torch.ones(input_shape, device=device)
thomwolf's avatar
thomwolf committed
347
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
348
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
349

350
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
thomwolf's avatar
thomwolf committed
351
352
353
354
355
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
356
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
thomwolf's avatar
thomwolf committed
357
358
359

        ##################################
        # Replace this with your model code
360
361
362
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
        encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask)
        sequence_output = encoder_outputs[0]
        outputs = (sequence_output,) + encoder_outputs[1:]  # add hidden_states and attentions if they are here

        return outputs  # sequence_output, (hidden_states), (attentions)


370
371
372
@add_start_docstrings(
    """Xxx Model with a `language modeling` head on top. """, XXX_START_DOCSTRING, XXX_INPUTS_DOCSTRING
)
thomwolf's avatar
thomwolf committed
373
374
375
376
377
class XxxForMaskedLM(XxxPreTrainedModel):
    r"""
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
LysandreJik's avatar
LysandreJik committed
378
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
thomwolf's avatar
thomwolf committed
379
380
381
382
383
384
385
386
387
388
389
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
390
        **attentions**: (`optional`, returned when ``output_attentions=True``)
thomwolf's avatar
thomwolf committed
391
392
393
394
395
396
397
398
399
400
401
402
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = XxxTokenizer.from_pretrained('xxx-base-uncased')
        model = XxxForMaskedLM.from_pretrained('xxx-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

    """
403

thomwolf's avatar
thomwolf committed
404
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
405
        super().__init__(config)
thomwolf's avatar
thomwolf committed
406
407

        self.transformer = XxxModel(config)
408
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
thomwolf's avatar
thomwolf committed
409
410
411

        self.init_weights()

thomwolf's avatar
thomwolf committed
412
    def get_output_embeddings(self):
413
        return self.lm_head
thomwolf's avatar
thomwolf committed
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
    ):

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
thomwolf's avatar
thomwolf committed
434
435
436
437
438
439

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
        if masked_lm_labels is not None:
LysandreJik's avatar
LysandreJik committed
440
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
441
442
443
444
445
446
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)


447
448
@add_start_docstrings(
    """Xxx Model transformer with a sequence classification/regression head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
449
    the pooled output) e.g. for GLUE tasks. """,
450
451
452
    XXX_START_DOCSTRING,
    XXX_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
class XxxForSequenceClassification(XxxPreTrainedModel):
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
470
        **attentions**: (`optional`, returned when ``output_attentions=True``)
thomwolf's avatar
thomwolf committed
471
472
473
474
475
476
477
478
479
480
481
482
483
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = XxxTokenizer.from_pretrained('xxx-base-uncased')
        model = XxxForSequenceClassification.from_pretrained('xxx-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

    """
484

thomwolf's avatar
thomwolf committed
485
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
486
        super().__init__(config)
thomwolf's avatar
thomwolf committed
487
488
489
490
491
492
493
494
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
thomwolf's avatar
thomwolf committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)


535
536
@add_start_docstrings(
    """Xxx Model with a token classification head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
537
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
538
539
540
    XXX_START_DOCSTRING,
    XXX_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
class XxxForTokenClassification(XxxPreTrainedModel):
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
556
        **attentions**: (`optional`, returned when ``output_attentions=True``)
thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
564
565
566
567
568
569
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = XxxTokenizer.from_pretrained('xxx-base-uncased')
        model = XxxForTokenClassification.from_pretrained('xxx-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, scores = outputs[:2]

    """
570

thomwolf's avatar
thomwolf committed
571
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
572
        super().__init__(config)
thomwolf's avatar
thomwolf committed
573
574
575
576
577
578
579
580
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
thomwolf's avatar
thomwolf committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), scores, (hidden_states), (attentions)


622
623
@add_start_docstrings(
    """Xxx Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
thomwolf's avatar
thomwolf committed
624
    the hidden-states output to compute `span start logits` and `span end logits`). """,
625
626
627
    XXX_START_DOCSTRING,
    XXX_INPUTS_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
class XxxForQuestionAnswering(XxxPreTrainedModel):
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
650
        **attentions**: (`optional`, returned when ``output_attentions=True``)
thomwolf's avatar
thomwolf committed
651
652
653
654
655
656
657
658
659
660
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = XxxTokenizer.from_pretrained('xxx-base-uncased')
        model = XxxForQuestionAnswering.from_pretrained('xxx-large-uncased-whole-word-masking-finetuned-squad')
        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        input_text = "[CLS] " + question + " [SEP] " + text + " [SEP]"
        input_ids = tokenizer.encode(input_text)
661
        token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))]
thomwolf's avatar
thomwolf committed
662
        start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids]))
663
        all_tokens = tokenizer.convert_ids_to_tokens(input_ids)
thomwolf's avatar
thomwolf committed
664
665
666
667
668
        print(' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]))
        # a nice puppet


    """
669

thomwolf's avatar
thomwolf committed
670
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
671
        super().__init__(config)
thomwolf's avatar
thomwolf committed
672
673
674
675
676
677
678
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
    ):

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
thomwolf's avatar
thomwolf committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        outputs = (start_logits, end_logits,) + outputs[2:]
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)