test_pipelines_common.py 9.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import unittest
from typing import List, Optional

from transformers import is_tf_available, is_torch_available, pipeline
from transformers.pipelines import DefaultArgumentHandler, Pipeline
from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow


VALID_INPUTS = ["A simple string", ["list of strings"]]


@is_pipeline_test
class CustomInputPipelineCommonMixin:
    pipeline_task = None
    pipeline_loading_kwargs = {}
    small_models = None  # Models tested without the @slow decorator
    large_models = None  # Models tested with the @slow decorator

    def setUp(self) -> None:
        if not is_tf_available() and not is_torch_available():
            return  # Currently no JAX pipelines

        # Download needed checkpoints
        models = self.small_models
        if _run_slow_tests:
            models = models + self.large_models

        for model_name in models:
            if is_torch_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="pt",
                    **self.pipeline_loading_kwargs,
                )
            if is_tf_available():
                pipeline(
                    self.pipeline_task,
                    model=model_name,
                    tokenizer=model_name,
                    framework="tf",
                    **self.pipeline_loading_kwargs,
                )

    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline(self.pipeline_task, framework="pt")

    @require_tf
    @slow
    def test_tf_defaults(self):
        pipeline(self.pipeline_task, framework="tf")

    @require_torch
    def test_torch_small(self):
        for model_name in self.small_models:
            nlp = pipeline(task=self.pipeline_task, model=model_name, tokenizer=model_name, framework="pt")
            self._test_pipeline(nlp)

    @require_tf
    def test_tf_small(self):
        for model_name in self.small_models:
            nlp = pipeline(task=self.pipeline_task, model=model_name, tokenizer=model_name, framework="tf")
            self._test_pipeline(nlp)

    @require_torch
    @slow
    def test_torch_large(self):
        for model_name in self.large_models:
            nlp = pipeline(task=self.pipeline_task, model=model_name, tokenizer=model_name, framework="pt")
            self._test_pipeline(nlp)

    @require_tf
    @slow
    def test_tf_large(self):
        for model_name in self.large_models:
            nlp = pipeline(task=self.pipeline_task, model=model_name, tokenizer=model_name, framework="tf")
            self._test_pipeline(nlp)

    def _test_pipeline(self, nlp: Pipeline):
        raise NotImplementedError


@is_pipeline_test
class MonoInputPipelineCommonMixin:
    pipeline_task = None
    pipeline_loading_kwargs = {}  # Additional kwargs to load the pipeline with
    pipeline_running_kwargs = {}  # Additional kwargs to run the pipeline with
    small_models = []  # Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator
    mandatory_keys = {}  # Keys which should be in the output
    valid_inputs = VALID_INPUTS  # inputs which are valid
    invalid_inputs = [None]  # inputs which are not allowed
    expected_multi_result: Optional[List] = None
    expected_check_keys: Optional[List[str]] = None

    def setUp(self) -> None:
        if not is_tf_available() and not is_torch_available():
            return  # Currently no JAX pipelines

        for model_name in self.small_models:
            pipeline(self.pipeline_task, model=model_name, tokenizer=model_name, **self.pipeline_loading_kwargs)
        for model_name in self.large_models:
            pipeline(self.pipeline_task, model=model_name, tokenizer=model_name, **self.pipeline_loading_kwargs)

    @require_torch
    @slow
    def test_pt_defaults_loads(self):
        pipeline(self.pipeline_task, framework="pt", **self.pipeline_loading_kwargs)

    @require_tf
    @slow
    def test_tf_defaults_loads(self):
        pipeline(self.pipeline_task, framework="tf", **self.pipeline_loading_kwargs)

    @require_torch
    def test_torch_small(self):
        for model_name in self.small_models:
            nlp = pipeline(
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
            self._test_pipeline(nlp)

    @require_tf
    def test_tf_small(self):
        for model_name in self.small_models:
            nlp = pipeline(
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
            self._test_pipeline(nlp)

    @require_torch
    @slow
    def test_torch_large(self):
        for model_name in self.large_models:
            nlp = pipeline(
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="pt",
                **self.pipeline_loading_kwargs,
            )
            self._test_pipeline(nlp)

    @require_tf
    @slow
    def test_tf_large(self):
        for model_name in self.large_models:
            nlp = pipeline(
                task=self.pipeline_task,
                model=model_name,
                tokenizer=model_name,
                framework="tf",
                **self.pipeline_loading_kwargs,
            )
            self._test_pipeline(nlp)

    def _test_pipeline(self, nlp: Pipeline):
        self.assertIsNotNone(nlp)

        mono_result = nlp(self.valid_inputs[0], **self.pipeline_running_kwargs)
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in self.mandatory_keys:
            self.assertIn(key, mono_result[0])

        multi_result = [nlp(input, **self.pipeline_running_kwargs) for input in self.valid_inputs]
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if self.expected_multi_result is not None:
            for result, expect in zip(multi_result, self.expected_multi_result):
                for key in self.expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]),
                        set([o[key] for o in expect]),
                    )

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in self.mandatory_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, self.invalid_inputs)


@is_pipeline_test
class DefaultArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self) -> None:
        self.handler = DefaultArgumentHandler()

    def test_kwargs_x(self):
        mono_data = {"X": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"x": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_kwargs_data(self):
        mono_data = {"data": "This is a sample input"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = {"data": ["This is a sample input", "This is a second sample input"]}
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

    def test_multi_kwargs(self):
        mono_data = {"data": "This is a sample input", "X": "This is a sample input 2"}
        mono_args = self.handler(**mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 2)

        multi_data = {
            "data": ["This is a sample input", "This is a second sample input"],
            "test": ["This is a sample input 2", "This is a second sample input 2"],
        }
        multi_args = self.handler(**multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 4)

    def test_args(self):
        mono_data = "This is a sample input"
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        mono_data = ["This is a sample input"]
        mono_args = self.handler(mono_data)

        self.assertTrue(isinstance(mono_args, list))
        self.assertEqual(len(mono_args), 1)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)

        multi_data = ["This is a sample input", "This is a second sample input"]
        multi_args = self.handler(*multi_data)

        self.assertTrue(isinstance(multi_args, list))
        self.assertEqual(len(multi_args), 2)