modeling_xxx.py 31.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# coding=utf-8
# Copyright 2018 XXX Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XXX model. """

####################################################
# In this template, replace all the XXX (various casings) with your model name
####################################################


import logging
import os

import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss

from .configuration_xxx import XxxConfig
30
31
32
33
34
35
36
37
38
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .modeling_outputs import (
    BaseModelOutputWithPooling,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
39
from .modeling_utils import PreTrainedModel
Aymeric Augustin's avatar
Aymeric Augustin committed
40

thomwolf's avatar
thomwolf committed
41
42
43

logger = logging.getLogger(__name__)

44
45
46
_CONFIG_FOR_DOC = "XXXConfig"
_TOKENIZER_FOR_DOC = "XXXTokenizer"

thomwolf's avatar
thomwolf committed
47
####################################################
48
49
# This list contrains shortcut names for some of
# the pretrained weights provided with the models
thomwolf's avatar
thomwolf committed
50
####################################################
51
52
53
54
XXX_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "xxx-base-uncased",
    "xxx-large-uncased",
]
thomwolf's avatar
thomwolf committed
55

56

thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
63
64
65
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_xxx(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model.
    """
    try:
        import re
66

thomwolf's avatar
thomwolf committed
67
68
69
        import numpy as np
        import tensorflow as tf
    except ImportError:
70
71
72
73
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
thomwolf's avatar
thomwolf committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
88
        name = name.split("/")
thomwolf's avatar
thomwolf committed
89
90
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
91
92
93
94
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
thomwolf's avatar
thomwolf committed
95
96
97
98
            logger.info("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
99
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
100
                scope_names = re.split(r"_(\d+)", m_name)
thomwolf's avatar
thomwolf committed
101
            else:
102
103
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
104
                pointer = getattr(pointer, "weight")
105
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
106
                pointer = getattr(pointer, "bias")
107
            elif scope_names[0] == "output_weights":
108
                pointer = getattr(pointer, "weight")
109
            elif scope_names[0] == "squad":
110
                pointer = getattr(pointer, "classifier")
thomwolf's avatar
thomwolf committed
111
112
            else:
                try:
113
                    pointer = getattr(pointer, scope_names[0])
thomwolf's avatar
thomwolf committed
114
115
116
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
117
118
            if len(scope_names) >= 2:
                num = int(scope_names[1])
thomwolf's avatar
thomwolf committed
119
                pointer = pointer[num]
120
121
122
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
thomwolf's avatar
thomwolf committed
123
124
            array = np.transpose(array)
        try:
Teven's avatar
Teven committed
125
126
127
            assert (
                pointer.shape == array.shape
            ), f"Pointer and array have mismatched shapes {pointer.shape} and {array.shape}"
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
135
136
137
138
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
Julien Chaumond's avatar
Julien Chaumond committed
139
# - PreTrainedModel for the models (itself a sub-class of torch.nn.Module)
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
####################################################

####################################################
# Here is an example of typical layer in a PyTorch model of the library
# The classes are usually identical to the TF 2.0 ones without the 'TF' prefix.
#
# See the conversion methods in modeling_tf_pytorch_utils.py for more details
####################################################
148
149
150
151
152
153
154
155

XxxAttention = nn.Module

XxxIntermediate = nn.Module

XxxOutput = nn.Module


thomwolf's avatar
thomwolf committed
156
157
class XxxLayer(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
158
        super().__init__()
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        self.attention = XxxAttention(config)
        self.intermediate = XxxIntermediate(config)
        self.output = XxxOutput(config)

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


####################################################
# PreTrainedModel is a sub-class of torch.nn.Module
# which take care of loading and saving pretrained weights
# and various common utilities.
#
# Here you just need to specify a few (self-explanatory)
# pointers for your model and the weights initialization
# method if its not fully covered by PreTrainedModel's default method
####################################################
181
182
183
184
185
186
187
188
189
190

XxxLayerNorm = torch.nn.LayerNorm

XxxEmbeddings = nn.Module

XxxEncoder = nn.Module

XxxPooler = nn.Module


thomwolf's avatar
thomwolf committed
191
192
class XxxPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
193
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
194
    """
195

thomwolf's avatar
thomwolf committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    config_class = XxxConfig
    load_tf_weights = load_tf_weights_in_xxx
    base_model_prefix = "transformer"

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XxxLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


XXX_START_DOCSTRING = r"""    The XXX model was proposed in
214
215
    `XXX: Pre-training of Deep Bidirectional Transformers for Language Understanding
    <https://arxiv.org/abs/1810.04805>`__ by....
thomwolf's avatar
thomwolf committed
216

217
218
219
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.
thomwolf's avatar
thomwolf committed
220
221

    Parameters:
222
        config (:class:`~transformers.XxxConfig`): Model configuration class with all the parameters of the model.
thomwolf's avatar
thomwolf committed
223
224
225
226
227
228
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

XXX_INPUTS_DOCSTRING = r"""
    Inputs:
229
        input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
thomwolf's avatar
thomwolf committed
230
231
232
233
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.XxxTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
234
235
236
237
            :func:`transformers.PreTrainedTokenizer.__call__` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
238
239
240
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
241
242
243

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
244
245
246
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
247
248
249

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
250
251
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
252
253
254

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
255
256
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
257
258
259
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
260
261
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
262
263
264
265
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
266
267
268
        return_dict (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
thomwolf's avatar
thomwolf committed
269
270
"""

271
272

@add_start_docstrings(
273
    "The bare XXX Model transformer outputting raw hidden-states without any specific head on top.",
274
275
    XXX_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
276
277
class XxxModel(XxxPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
278
        super().__init__(config)
thomwolf's avatar
thomwolf committed
279
280
281
282
283
284
285

        self.embeddings = XxxEmbeddings(config)
        self.encoder = XxxEncoder(config)
        self.pooler = XxxPooler(config)

        self.init_weights()

thomwolf's avatar
thomwolf committed
286
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
287
288
        return self.embeddings.word_embeddings

thomwolf's avatar
thomwolf committed
289
    def set_input_embeddings(self, new_embeddings):
290
291
        self.embeddings.word_embeddings = new_embeddings

thomwolf's avatar
thomwolf committed
292
293
294
295
296
297
298
299
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

300
301
302
303
304
305
306
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
    )
307
308
309
310
311
312
313
314
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
315
316
        output_attentions=None,
        output_hidden_states=None,
317
        return_dict=None,
318
    ):
319
320
321
322
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
323
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
324

Julien Chaumond's avatar
Julien Chaumond committed
325
326
327
328
329
330
331
332
333
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

Julien Chaumond's avatar
Julien Chaumond committed
334
335
        device = input_ids.device if input_ids is not None else inputs_embeds.device

thomwolf's avatar
thomwolf committed
336
        if attention_mask is None:
Julien Chaumond's avatar
Julien Chaumond committed
337
            attention_mask = torch.ones(input_shape, device=device)
thomwolf's avatar
thomwolf committed
338
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
339
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
340

341
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
thomwolf's avatar
thomwolf committed
342
343
344
345
346
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
347
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
thomwolf's avatar
thomwolf committed
348
349
350

        ##################################
        # Replace this with your model code
351
352
353
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
thomwolf's avatar
thomwolf committed
354
355
        encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask)
        sequence_output = encoder_outputs[0]
356
        pooled_output = self.pooler(sequence_output)
thomwolf's avatar
thomwolf committed
357

358
        if not return_dict:
359
            return (sequence_output, pooled_output) + encoder_outputs[1:]
thomwolf's avatar
thomwolf committed
360

361
362
363
364
365
366
        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
367

368

369
370
@add_start_docstrings("""XXX Model with a `language modeling` head on top. """, XXX_START_DOCSTRING)
class XxxForMaskedLM(XxxPreTrainedModel):
thomwolf's avatar
thomwolf committed
371
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
372
        super().__init__(config)
thomwolf's avatar
thomwolf committed
373
374

        self.transformer = XxxModel(config)
375
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
thomwolf's avatar
thomwolf committed
376
377
378

        self.init_weights()

thomwolf's avatar
thomwolf committed
379
    def get_output_embeddings(self):
380
        return self.lm_head
thomwolf's avatar
thomwolf committed
381

382
383
384
385
386
387
388
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
389
390
391
392
393
394
395
396
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
397
398
399
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
400
        return_dict=None,
401
    ):
402
403
404
405
406
407
408
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        """
409
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
410
411
412
413
414
415
416
417

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
418
419
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
420
            return_dict=return_dict,
421
        )
thomwolf's avatar
thomwolf committed
422
423
424
425

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

426
427
428
429
430
        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

431
        if not return_dict:
432
433
434
435
436
437
438
439
440
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
441
442


443
@add_start_docstrings(
444
    """XXX Model transformer with a sequence classification/regression head on top (a linear layer on top of
thomwolf's avatar
thomwolf committed
445
    the pooled output) e.g. for GLUE tasks. """,
446
447
    XXX_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
448
449
class XxxForSequenceClassification(XxxPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
450
        super().__init__(config)
thomwolf's avatar
thomwolf committed
451
452
453
454
455
456
457
458
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

459
460
461
462
463
464
465
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
466
467
468
469
470
471
472
473
474
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
475
476
        output_attentions=None,
        output_hidden_states=None,
477
        return_dict=None,
478
    ):
479
480
481
482
483
484
485
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
486
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
487
488
489
490
491
492
493
494

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
495
496
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
497
            return_dict=return_dict,
498
        )
thomwolf's avatar
thomwolf committed
499
500
501
502
503
504

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

505
        loss = None
thomwolf's avatar
thomwolf committed
506
507
508
509
510
511
512
513
514
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

515
        if not return_dict:
516
517
518
519
520
521
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
522
523


524
@add_start_docstrings(
525
526
    """XXX Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
527
528
    XXX_START_DOCSTRING,
)
529
530
531
class XxxForMultipleChoice(XxxPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
thomwolf's avatar
thomwolf committed
532

533
534
535
        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        self.init_weights()

    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
557
        return_dict=None,
558
559
560
561
562
563
564
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
        """
565
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
587
            return_dict=return_dict,
588
589
590
591
592
593
594
595
596
597
598
599
600
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

601
        if not return_dict:
602
603
604
605
606
607
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
608

609
610
611
612
613
614
615

@add_start_docstrings(
    """XXX Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    XXX_START_DOCSTRING,
)
class XxxForTokenClassification(XxxPreTrainedModel):
thomwolf's avatar
thomwolf committed
616
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
617
        super().__init__(config)
thomwolf's avatar
thomwolf committed
618
619
620
621
622
623
624
625
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

626
627
628
629
630
631
632
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
633
634
635
636
637
638
639
640
641
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
642
643
        output_attentions=None,
        output_hidden_states=None,
644
        return_dict=None,
645
    ):
646
647
648
649
650
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
        """
651
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
652
653
654
655
656
657
658
659

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
660
661
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
662
            return_dict=return_dict,
663
        )
thomwolf's avatar
thomwolf committed
664
665
666
667
668
669

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

670
        loss = None
thomwolf's avatar
thomwolf committed
671
672
673
674
675
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
676
677
678
679
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
thomwolf's avatar
thomwolf committed
680
681
682
683
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

684
        if not return_dict:
685
686
687
688
689
690
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
thomwolf's avatar
thomwolf committed
691
692


693
@add_start_docstrings(
694
695
    """XXX Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
696
697
    XXX_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
698
699
class XxxForQuestionAnswering(XxxPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
700
        super().__init__(config)
thomwolf's avatar
thomwolf committed
701
702
703
704
705
706
707
        self.num_labels = config.num_labels

        self.transformer = XxxModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

708
709
710
711
712
713
714
    @add_start_docstrings_to_callable(XXX_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="xxx-base-uncased",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
715
716
717
718
719
720
721
722
723
724
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
725
726
        output_attentions=None,
        output_hidden_states=None,
727
        return_dict=None,
728
    ):
729
730
731
732
733
734
735
736
737
738
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        """
739
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
740
741
742
743
744
745
746
747

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
748
749
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
750
            return_dict=return_dict,
751
        )
thomwolf's avatar
thomwolf committed
752
753
754
755
756
757
758
759

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

760
        total_loss = None
thomwolf's avatar
thomwolf committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

777
        if not return_dict:
778
779
780
781
782
783
784
785
786
787
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )