translation.mdx 15.1 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Translation

15
16
[[open-in-colab]]

Steven Liu's avatar
Steven Liu committed
17
18
<Youtube id="1JvfrvZgi6c"/>

19
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
Steven Liu's avatar
Steven Liu committed
20

21
22
23
24
This guide will show you how to:

1. Finetune [T5](https://huggingface.co/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
25
26

<Tip>
27
The task illustrated in this tutorial is supported by the following model architectures:
Steven Liu's avatar
Steven Liu committed
28

29
30
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->

31
[BART](../model_doc/bart), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [Encoder decoder](../model_doc/encoder-decoder), [FairSeq Machine-Translation](../model_doc/fsmt), [GPTSAN-japanese](../model_doc/gptsan-japanese), [LED](../model_doc/led), [LongT5](../model_doc/longt5), [M2M100](../model_doc/m2m_100), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [NLLB](../model_doc/nllb), [Pegasus](../model_doc/pegasus), [PEGASUS-X](../model_doc/pegasus_x), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [SwitchTransformers](../model_doc/switch_transformers), [T5](../model_doc/t5), [XLM-ProphetNet](../model_doc/xlm-prophetnet)
32
33

<!--End of the generated tip-->
Steven Liu's avatar
Steven Liu committed
34
35
36

</Tip>

37
38
39
Before you begin, make sure you have all the necessary libraries installed:

```bash
40
pip install transformers datasets evaluate sacrebleu
41
42
43
44
45
46
47
48
49
50
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

Steven Liu's avatar
Steven Liu committed
51
52
## Load OPUS Books dataset

53
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
54
55
56
57
58
59
60

```py
>>> from datasets import load_dataset

>>> books = load_dataset("opus_books", "en-fr")
```

61
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
Steven Liu's avatar
Steven Liu committed
62
63

```py
64
>>> books = books["train"].train_test_split(test_size=0.2)
Steven Liu's avatar
Steven Liu committed
65
66
67
68
69
70
71
72
73
74
75
```

Then take a look at an example:

```py
>>> books["train"][0]
{'id': '90560',
 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
  'fr': 'Mais ce plateau 茅lev茅 ne mesurait que quelques toises, et bient么t nous f没mes rentr茅s dans notre 茅l茅ment.'}}
```

76
`translation`: an English and French translation of the text.
Steven Liu's avatar
Steven Liu committed
77
78
79
80
81

## Preprocess

<Youtube id="XAR8jnZZuUs"/>

82
The next step is to load a T5 tokenizer to process the English-French language pairs:
Steven Liu's avatar
Steven Liu committed
83
84
85
86

```py
>>> from transformers import AutoTokenizer

87
88
>>> checkpoint = "t5-small"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
Steven Liu's avatar
Steven Liu committed
89
90
```

91
The preprocessing function you want to create needs to:
Steven Liu's avatar
Steven Liu committed
92
93

1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
94
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
Steven Liu's avatar
Steven Liu committed
95
96
97
98
99
100
101
102
103
104
105
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.

```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "


>>> def preprocess_function(examples):
...     inputs = [prefix + example[source_lang] for example in examples["translation"]]
...     targets = [example[target_lang] for example in examples["translation"]]
106
...     model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
Steven Liu's avatar
Steven Liu committed
107
108
109
...     return model_inputs
```

110
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
Steven Liu's avatar
Steven Liu committed
111
112
113
114
115

```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```

116
117
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.

118
119
120
<frameworkcontent>
<pt>
```py
121
>>> from transformers import DataCollatorForSeq2Seq
122

123
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
124
125
126
127
128
```
</pt>
<tf>

```py
129
>>> from transformers import DataCollatorForSeq2Seq
130

131
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
132
133
134
135
```
</tf>
</frameworkcontent>

136
## Evaluate
Steven Liu's avatar
Steven Liu committed
137

138
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
139

Steven Liu's avatar
Steven Liu committed
140
```py
141
>>> import evaluate
Steven Liu's avatar
Steven Liu committed
142

143
>>> metric = evaluate.load("sacrebleu")
Sylvain Gugger's avatar
Sylvain Gugger committed
144
```
145
146

Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
147

Sylvain Gugger's avatar
Sylvain Gugger committed
148
```py
149
>>> import numpy as np
Steven Liu's avatar
Steven Liu committed
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

>>> def postprocess_text(preds, labels):
...     preds = [pred.strip() for pred in preds]
...     labels = [[label.strip()] for label in labels]

...     return preds, labels


>>> def compute_metrics(eval_preds):
...     preds, labels = eval_preds
...     if isinstance(preds, tuple):
...         preds = preds[0]
...     decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

...     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
...     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

...     decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

...     result = metric.compute(predictions=decoded_preds, references=decoded_labels)
...     result = {"bleu": result["score"]}

...     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
...     result["gen_len"] = np.mean(prediction_lens)
...     result = {k: round(v, 4) for k, v in result.items()}
...     return result
Steven Liu's avatar
Steven Liu committed
177
```
178
179

Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
Steven Liu's avatar
Steven Liu committed
180

181
## Train
Steven Liu's avatar
Steven Liu committed
182

183
184
<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
185
186
<Tip>

187
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
Steven Liu's avatar
Steven Liu committed
188
189

</Tip>
190

191
192
193
194
195
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:

```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

196
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
197
```
Steven Liu's avatar
Steven Liu committed
198
199
200

At this point, only three steps remain:

201
202
203
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
Steven Liu's avatar
Steven Liu committed
204
205
206

```py
>>> training_args = Seq2SeqTrainingArguments(
207
...     output_dir="my_awesome_opus_books_model",
Steven Liu's avatar
Steven Liu committed
208
209
210
211
212
213
...     evaluation_strategy="epoch",
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
214
215
...     num_train_epochs=2,
...     predict_with_generate=True,
Steven Liu's avatar
Steven Liu committed
216
...     fp16=True,
217
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
218
219
220
221
222
223
224
225
226
... )

>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_books["train"],
...     eval_dataset=tokenized_books["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
227
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
228
229
230
... )

>>> trainer.train()
231
232
233
234
235
236
````

Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:

```py
>>> trainer.push_to_hub()
Steven Liu's avatar
Steven Liu committed
237
```
238
239
</pt>
<tf>
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
<Tip>

If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!

</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:

```py
>>> from transformers import AdamWeightDecay

>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```

Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

258
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
259
260
261
```

Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
Steven Liu's avatar
Steven Liu committed
262
263

```py
Matt's avatar
Matt committed
264
265
>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_books["train"],
Steven Liu's avatar
Steven Liu committed
266
267
268
269
270
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )

Matt's avatar
Matt committed
271
272
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_books["test"],
Steven Liu's avatar
Steven Liu committed
273
274
275
276
277
278
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )
```

279
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
280

281
282
```py
>>> import tensorflow as tf
283

284
285
286
287
>>> model.compile(optimizer=optimizer)
```

The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](./main_classes/keras_callbacks).
288

289
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
Steven Liu's avatar
Steven Liu committed
290
291

```py
292
>>> from transformers.keras_callbacks import KerasMetricCallback
Steven Liu's avatar
Steven Liu committed
293

294
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
Steven Liu's avatar
Steven Liu committed
295
296
```

297
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
Steven Liu's avatar
Steven Liu committed
298
299

```py
300
301
302
303
304
305
306
307
308
309
310
311
>>> from transformers.keras_callbacks import PushToHubCallback

>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_opus_books_model",
...     tokenizer=tokenizer,
... )
```

Then bundle your callbacks together:

```py
>>> callbacks = [metric_callback, push_to_hub_callback]
Steven Liu's avatar
Steven Liu committed
312
313
```

314
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
Steven Liu's avatar
Steven Liu committed
315
316

```py
317
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
Steven Liu's avatar
Steven Liu committed
318
```
319
320

Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
321
322
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
323
324
325

<Tip>

326
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
327
328
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
Steven Liu's avatar
Steven Liu committed
329

330
</Tip>
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:

```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:

```py
>>> from transformers import pipeline

>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bact茅ries azotantes.'}]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```

Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import AutoModelForSeq2SeqLM

>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lign茅es partagent des ressources avec des bact茅ries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```

Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bact茅ries fixatrices d'azote.'
```
</tf>
</frameworkcontent>