translation.mdx 14.2 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Translation

<Youtube id="1JvfrvZgi6c"/>

17
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
Steven Liu's avatar
Steven Liu committed
18

19
20
21
22
This guide will show you how to:

1. Finetune [T5](https://huggingface.co/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
23
24
25
26
27
28
29

<Tip>

See the translation [task page](https://huggingface.co/tasks/translation) for more information about its associated models, datasets, and metrics.

</Tip>

30
31
32
33
34
35
36
37
38
39
40
41
42
43
Before you begin, make sure you have all the necessary libraries installed:

```bash
pip install transformers datasets evaluate
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

Steven Liu's avatar
Steven Liu committed
44
45
## Load OPUS Books dataset

46
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
47
48
49
50
51
52
53

```py
>>> from datasets import load_dataset

>>> books = load_dataset("opus_books", "en-fr")
```

54
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
Steven Liu's avatar
Steven Liu committed
55
56

```py
57
>>> books = books["train"].train_test_split(test_size=0.2)
Steven Liu's avatar
Steven Liu committed
58
59
60
61
62
63
64
65
66
67
68
```

Then take a look at an example:

```py
>>> books["train"][0]
{'id': '90560',
 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
  'fr': 'Mais ce plateau 茅lev茅 ne mesurait que quelques toises, et bient么t nous f没mes rentr茅s dans notre 茅l茅ment.'}}
```

69
`translation`: an English and French translation of the text.
Steven Liu's avatar
Steven Liu committed
70
71
72
73
74

## Preprocess

<Youtube id="XAR8jnZZuUs"/>

75
The next step is to load a T5 tokenizer to process the English-French language pairs:
Steven Liu's avatar
Steven Liu committed
76
77
78
79
80
81
82

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
```

83
The preprocessing function you want to create needs to:
Steven Liu's avatar
Steven Liu committed
84
85

1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
86
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
Steven Liu's avatar
Steven Liu committed
87
88
89
90
91
92
93
94
95
96
97
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.

```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "


>>> def preprocess_function(examples):
...     inputs = [prefix + example[source_lang] for example in examples["translation"]]
...     targets = [example[target_lang] for example in examples["translation"]]
98
...     model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
Steven Liu's avatar
Steven Liu committed
99
100
101
...     return model_inputs
```

102
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
Steven Liu's avatar
Steven Liu committed
103
104
105
106
107

```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```

108
109
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.

110
111
112
<frameworkcontent>
<pt>
```py
113
>>> from transformers import DataCollatorForSeq2Seq
114

115
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
116
117
118
119
120
```
</pt>
<tf>

```py
121
>>> from transformers import DataCollatorForSeq2Seq
122

123
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
124
125
126
127
```
</tf>
</frameworkcontent>

128
## Evaluate
Steven Liu's avatar
Steven Liu committed
129

130
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
131

Steven Liu's avatar
Steven Liu committed
132
```py
133
>>> import evaluate
Steven Liu's avatar
Steven Liu committed
134

135
>>> sacrebleu = evaluate.load("sacrebleu")
Sylvain Gugger's avatar
Sylvain Gugger committed
136
```
137
138

Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
139

Sylvain Gugger's avatar
Sylvain Gugger committed
140
```py
141
>>> import numpy as np
Steven Liu's avatar
Steven Liu committed
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

>>> def postprocess_text(preds, labels):
...     preds = [pred.strip() for pred in preds]
...     labels = [[label.strip()] for label in labels]

...     return preds, labels


>>> def compute_metrics(eval_preds):
...     preds, labels = eval_preds
...     if isinstance(preds, tuple):
...         preds = preds[0]
...     decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

...     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
...     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

...     decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

...     result = metric.compute(predictions=decoded_preds, references=decoded_labels)
...     result = {"bleu": result["score"]}

...     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
...     result["gen_len"] = np.mean(prediction_lens)
...     result = {k: round(v, 4) for k, v in result.items()}
...     return result
Steven Liu's avatar
Steven Liu committed
169
```
170
171

Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
Steven Liu's avatar
Steven Liu committed
172

173
## Train
Steven Liu's avatar
Steven Liu committed
174

175
176
<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
177
178
<Tip>

179
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
Steven Liu's avatar
Steven Liu committed
180
181

</Tip>
182
183
184
185
186
187
188
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:

```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
```
Steven Liu's avatar
Steven Liu committed
189
190
191

At this point, only three steps remain:

192
193
194
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
Steven Liu's avatar
Steven Liu committed
195
196
197

```py
>>> training_args = Seq2SeqTrainingArguments(
198
...     output_dir="my_awesome_opus_books_model",
Steven Liu's avatar
Steven Liu committed
199
200
201
202
203
204
...     evaluation_strategy="epoch",
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
205
206
...     num_train_epochs=2,
...     predict_with_generate=True,
Steven Liu's avatar
Steven Liu committed
207
...     fp16=True,
208
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
209
210
211
212
213
214
215
216
217
... )

>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_books["train"],
...     eval_dataset=tokenized_books["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
218
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
219
220
221
... )

>>> trainer.train()
222
223
224
225
226
227
````

Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:

```py
>>> trainer.push_to_hub()
Steven Liu's avatar
Steven Liu committed
228
```
229
230
</pt>
<tf>
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
<Tip>

If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!

</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:

```py
>>> from transformers import AdamWeightDecay

>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```

Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-small")
```

Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
Steven Liu's avatar
Steven Liu committed
253
254

```py
Matt's avatar
Matt committed
255
256
>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_books["train"],
Steven Liu's avatar
Steven Liu committed
257
258
259
260
261
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )

Matt's avatar
Matt committed
262
263
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_books["test"],
Steven Liu's avatar
Steven Liu committed
264
265
266
267
268
269
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )
```

270
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
271

272
273
```py
>>> import tensorflow as tf
274

275
276
277
278
>>> model.compile(optimizer=optimizer)
```

The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](./main_classes/keras_callbacks).
279

280
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
Steven Liu's avatar
Steven Liu committed
281
282

```py
283
>>> from transformers.keras_callbacks import KerasMetricCallback
Steven Liu's avatar
Steven Liu committed
284

285
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
Steven Liu's avatar
Steven Liu committed
286
287
```

288
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
Steven Liu's avatar
Steven Liu committed
289
290

```py
291
292
293
294
295
296
297
298
299
300
301
302
>>> from transformers.keras_callbacks import PushToHubCallback

>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_opus_books_model",
...     tokenizer=tokenizer,
... )
```

Then bundle your callbacks together:

```py
>>> callbacks = [metric_callback, push_to_hub_callback]
Steven Liu's avatar
Steven Liu committed
303
304
```

305
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
Steven Liu's avatar
Steven Liu committed
306
307

```py
308
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
Steven Liu's avatar
Steven Liu committed
309
```
310
311

Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
312
313
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
314
315
316

<Tip>

317
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
318
319
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
Steven Liu's avatar
Steven Liu committed
320

321
</Tip>
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:

```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:

```py
>>> from transformers import pipeline

>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bact茅ries azotantes.'}]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```

Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import AutoModelForSeq2SeqLM

>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lign茅es partagent des ressources avec des bact茅ries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```

Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bact茅ries fixatrices d'azote.'
```
</tf>
</frameworkcontent>