translation.mdx 15 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Translation

<Youtube id="1JvfrvZgi6c"/>

17
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
Steven Liu's avatar
Steven Liu committed
18

19
20
21
22
This guide will show you how to:

1. Finetune [T5](https://huggingface.co/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
23
24

<Tip>
25
The task illustrated in this tutorial is supported by the following model architectures:
Steven Liu's avatar
Steven Liu committed
26

27
28
29
30
31
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->

[BART](../model_doc/bart), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [Blenderbot](../model_doc/blenderbot), [BlenderbotSmall](../model_doc/blenderbot-small), [Encoder decoder](../model_doc/encoder-decoder), [FairSeq Machine-Translation](../model_doc/fsmt), [LED](../model_doc/led), [LongT5](../model_doc/longt5), [M2M100](../model_doc/m2m_100), [Marian](../model_doc/marian), [mBART](../model_doc/mbart), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [NLLB](../model_doc/nllb), [Pegasus](../model_doc/pegasus), [PEGASUS-X](../model_doc/pegasus_x), [PLBart](../model_doc/plbart), [ProphetNet](../model_doc/prophetnet), [SwitchTransformers](../model_doc/switch_transformers), [T5](../model_doc/t5), [XLM-ProphetNet](../model_doc/xlm-prophetnet)

<!--End of the generated tip-->
Steven Liu's avatar
Steven Liu committed
32
33
34

</Tip>

35
36
37
Before you begin, make sure you have all the necessary libraries installed:

```bash
38
pip install transformers datasets evaluate sacrebleu
39
40
41
42
43
44
45
46
47
48
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

Steven Liu's avatar
Steven Liu committed
49
50
## Load OPUS Books dataset

51
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
52
53
54
55
56
57
58

```py
>>> from datasets import load_dataset

>>> books = load_dataset("opus_books", "en-fr")
```

59
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
Steven Liu's avatar
Steven Liu committed
60
61

```py
62
>>> books = books["train"].train_test_split(test_size=0.2)
Steven Liu's avatar
Steven Liu committed
63
64
65
66
67
68
69
70
71
72
73
```

Then take a look at an example:

```py
>>> books["train"][0]
{'id': '90560',
 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
  'fr': 'Mais ce plateau 茅lev茅 ne mesurait que quelques toises, et bient么t nous f没mes rentr茅s dans notre 茅l茅ment.'}}
```

74
`translation`: an English and French translation of the text.
Steven Liu's avatar
Steven Liu committed
75
76
77
78
79

## Preprocess

<Youtube id="XAR8jnZZuUs"/>

80
The next step is to load a T5 tokenizer to process the English-French language pairs:
Steven Liu's avatar
Steven Liu committed
81
82
83
84

```py
>>> from transformers import AutoTokenizer

85
86
>>> checkpoint = "t5-small"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
Steven Liu's avatar
Steven Liu committed
87
88
```

89
The preprocessing function you want to create needs to:
Steven Liu's avatar
Steven Liu committed
90
91

1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
92
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
Steven Liu's avatar
Steven Liu committed
93
94
95
96
97
98
99
100
101
102
103
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.

```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "


>>> def preprocess_function(examples):
...     inputs = [prefix + example[source_lang] for example in examples["translation"]]
...     targets = [example[target_lang] for example in examples["translation"]]
104
...     model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
Steven Liu's avatar
Steven Liu committed
105
106
107
...     return model_inputs
```

108
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
Steven Liu's avatar
Steven Liu committed
109
110
111
112
113

```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```

114
115
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.

116
117
118
<frameworkcontent>
<pt>
```py
119
>>> from transformers import DataCollatorForSeq2Seq
120

121
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
122
123
124
125
126
```
</pt>
<tf>

```py
127
>>> from transformers import DataCollatorForSeq2Seq
128

129
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
130
131
132
133
```
</tf>
</frameworkcontent>

134
## Evaluate
Steven Liu's avatar
Steven Liu committed
135

136
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
137

Steven Liu's avatar
Steven Liu committed
138
```py
139
>>> import evaluate
Steven Liu's avatar
Steven Liu committed
140

141
>>> metric = evaluate.load("sacrebleu")
Sylvain Gugger's avatar
Sylvain Gugger committed
142
```
143
144

Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
145

Sylvain Gugger's avatar
Sylvain Gugger committed
146
```py
147
>>> import numpy as np
Steven Liu's avatar
Steven Liu committed
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

>>> def postprocess_text(preds, labels):
...     preds = [pred.strip() for pred in preds]
...     labels = [[label.strip()] for label in labels]

...     return preds, labels


>>> def compute_metrics(eval_preds):
...     preds, labels = eval_preds
...     if isinstance(preds, tuple):
...         preds = preds[0]
...     decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

...     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
...     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

...     decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

...     result = metric.compute(predictions=decoded_preds, references=decoded_labels)
...     result = {"bleu": result["score"]}

...     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
...     result["gen_len"] = np.mean(prediction_lens)
...     result = {k: round(v, 4) for k, v in result.items()}
...     return result
Steven Liu's avatar
Steven Liu committed
175
```
176
177

Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
Steven Liu's avatar
Steven Liu committed
178

179
## Train
Steven Liu's avatar
Steven Liu committed
180

181
182
<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
183
184
<Tip>

185
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
Steven Liu's avatar
Steven Liu committed
186
187

</Tip>
188
189
190
191
192
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:

```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

193
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
194
```
Steven Liu's avatar
Steven Liu committed
195
196
197

At this point, only three steps remain:

198
199
200
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
Steven Liu's avatar
Steven Liu committed
201
202
203

```py
>>> training_args = Seq2SeqTrainingArguments(
204
...     output_dir="my_awesome_opus_books_model",
Steven Liu's avatar
Steven Liu committed
205
206
207
208
209
210
...     evaluation_strategy="epoch",
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
211
212
...     num_train_epochs=2,
...     predict_with_generate=True,
Steven Liu's avatar
Steven Liu committed
213
...     fp16=True,
214
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
215
216
217
218
219
220
221
222
223
... )

>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_books["train"],
...     eval_dataset=tokenized_books["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
224
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
225
226
227
... )

>>> trainer.train()
228
229
230
231
232
233
````

Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:

```py
>>> trainer.push_to_hub()
Steven Liu's avatar
Steven Liu committed
234
```
235
236
</pt>
<tf>
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
<Tip>

If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!

</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:

```py
>>> from transformers import AdamWeightDecay

>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```

Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

255
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
256
257
258
```

Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
Steven Liu's avatar
Steven Liu committed
259
260

```py
Matt's avatar
Matt committed
261
262
>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_books["train"],
Steven Liu's avatar
Steven Liu committed
263
264
265
266
267
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )

Matt's avatar
Matt committed
268
269
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_books["test"],
Steven Liu's avatar
Steven Liu committed
270
271
272
273
274
275
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )
```

276
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
277

278
279
```py
>>> import tensorflow as tf
280

281
282
283
284
>>> model.compile(optimizer=optimizer)
```

The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](./main_classes/keras_callbacks).
285

286
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
Steven Liu's avatar
Steven Liu committed
287
288

```py
289
>>> from transformers.keras_callbacks import KerasMetricCallback
Steven Liu's avatar
Steven Liu committed
290

291
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
Steven Liu's avatar
Steven Liu committed
292
293
```

294
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
Steven Liu's avatar
Steven Liu committed
295
296

```py
297
298
299
300
301
302
303
304
305
306
307
308
>>> from transformers.keras_callbacks import PushToHubCallback

>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_opus_books_model",
...     tokenizer=tokenizer,
... )
```

Then bundle your callbacks together:

```py
>>> callbacks = [metric_callback, push_to_hub_callback]
Steven Liu's avatar
Steven Liu committed
309
310
```

311
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
Steven Liu's avatar
Steven Liu committed
312
313

```py
314
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
Steven Liu's avatar
Steven Liu committed
315
```
316
317

Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
318
319
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
320
321
322

<Tip>

323
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
324
325
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
Steven Liu's avatar
Steven Liu committed
326

327
</Tip>
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:

```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:

```py
>>> from transformers import pipeline

>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bact茅ries azotantes.'}]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```

Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import AutoModelForSeq2SeqLM

>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lign茅es partagent des ressources avec des bact茅ries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```

Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bact茅ries fixatrices d'azote.'
```
</tf>
</frameworkcontent>