run_language_modeling.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
17
18
19
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
20
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from glob import glob
Julien Chaumond's avatar
Julien Chaumond committed
28
from typing import Optional
29

30
31
from torch.utils.data import ConcatDataset

32
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
33
    CONFIG_MAPPING,
34
35
36
37
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
38
    DataCollatorForLanguageModeling,
39
    DataCollatorForPermutationLanguageModeling,
40
    DataCollatorForWholeWordMask,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
    HfArgumentParser,
    LineByLineTextDataset,
43
    LineByLineWithRefDataset,
44
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
45
46
47
48
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
49
)
50

51

52
logger = logging.getLogger(__name__)
53
54


55
56
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
57
58


Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
63
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
64

Julien Chaumond's avatar
Julien Chaumond committed
65
66
67
68
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
69
70
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
71
72
73
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
74
    )
Julien Chaumond's avatar
Julien Chaumond committed
75
76
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
77
    )
Julien Chaumond's avatar
Julien Chaumond committed
78
79
80
81
82
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
83
    )
84
85


Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
90
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
91

Julien Chaumond's avatar
Julien Chaumond committed
92
93
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
94
    )
95
    train_data_files: Optional[str] = field(
sgugger's avatar
sgugger committed
96
97
        default=None,
        metadata={
98
            "help": "The input training data files (multiple files in glob format). "
sgugger's avatar
sgugger committed
99
100
            "Very often splitting large files to smaller files can prevent tokenizer going out of memory"
        },
101
    )
Julien Chaumond's avatar
Julien Chaumond committed
102
    eval_data_file: Optional[str] = field(
103
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
104
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
105
    )
106
107
108
109
    chinese_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input ref data file for whole word mask in Chinees."},
    )
Julien Chaumond's avatar
Julien Chaumond committed
110
111
112
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
113
114
    )

Julien Chaumond's avatar
Julien Chaumond committed
115
116
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
117
    )
118
    whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."})
Julien Chaumond's avatar
Julien Chaumond committed
119
120
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
121
    )
122
123
124
125
126
127
128
129
130
    plm_probability: float = field(
        default=1 / 6,
        metadata={
            "help": "Ratio of length of a span of masked tokens to surrounding context length for permutation language modeling."
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
131

Julien Chaumond's avatar
Julien Chaumond committed
132
    block_size: int = field(
133
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
134
135
136
137
138
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
139
    )
Julien Chaumond's avatar
Julien Chaumond committed
140
141
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
142
143
144
    )


145
146
147
148
149
150
def get_dataset(
    args: DataTrainingArguments,
    tokenizer: PreTrainedTokenizer,
    evaluate: bool = False,
    cache_dir: Optional[str] = None,
):
151
152
    def _dataset(file_path):
        if args.line_by_line:
153
154
155
156
157
158
159
160
161
162
            if args.chinese_ref_file is not None:
                if not args.whole_word_mask or not args.mlm:
                    raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
                return LineByLineWithRefDataset(
                    tokenizer=tokenizer,
                    file_path=file_path,
                    block_size=args.block_size,
                    ref_path=args.chinese_ref_file,
                )

163
164
165
166
167
168
169
170
171
172
173
174
175
176
            return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
        else:
            return TextDataset(
                tokenizer=tokenizer,
                file_path=file_path,
                block_size=args.block_size,
                overwrite_cache=args.overwrite_cache,
                cache_dir=cache_dir,
            )

    if evaluate:
        return _dataset(args.eval_data_file)
    elif args.train_data_files:
        return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
Julien Chaumond's avatar
Julien Chaumond committed
177
    else:
178
        return _dataset(args.train_data_file)
179

180

Julien Chaumond's avatar
Julien Chaumond committed
181
182
183
184
185
186
187
188
189
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
190
191
192
193
194
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
    if (
Julien Chaumond's avatar
Julien Chaumond committed
195
196
197
198
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
199
200
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
201
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
202
        )
203
204

    # Setup logging
205
206
207
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
208
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
209
210
211
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
212
213
214
215
216
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
217
    )
Julien Chaumond's avatar
Julien Chaumond committed
218
    logger.info("Training/evaluation parameters %s", training_args)
219
220

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
221
    set_seed(training_args.seed)
222
223

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
224
225
226
227
228
229
230
231
232
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
233
    else:
Julien Chaumond's avatar
Julien Chaumond committed
234
235
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
236

Julien Chaumond's avatar
Julien Chaumond committed
237
238
239
240
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
241
    else:
242
        raise ValueError(
243
244
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
245
246
        )

Julien Chaumond's avatar
Julien Chaumond committed
247
    if model_args.model_name_or_path:
248
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
249
250
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
251
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
252
            cache_dir=model_args.cache_dir,
253
254
255
        )
    else:
        logger.info("Training new model from scratch")
256
        model = AutoModelWithLMHead.from_config(config)
257

Julien Chaumond's avatar
Julien Chaumond committed
258
    model.resize_token_embeddings(len(tokenizer))
259

Julien Chaumond's avatar
Julien Chaumond committed
260
261
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
262
263
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
            "--mlm flag (masked language modeling)."
Julien Chaumond's avatar
Julien Chaumond committed
264
        )
265

Julien Chaumond's avatar
Julien Chaumond committed
266
267
268
269
270
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
271

Julien Chaumond's avatar
Julien Chaumond committed
272
    # Get datasets
273

274
275
276
277
278
279
280
281
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
        if training_args.do_eval
        else None
    )
282
283
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
Lysandre's avatar
Lysandre committed
284
285
286
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
287
288
        )
    else:
289
290
291
292
293
294
295
296
        if data_args.mlm and data_args.whole_word_mask:
            data_collator = DataCollatorForWholeWordMask(
                tokenizer=tokenizer, mlm_probability=data_args.mlm_probability
            )
        else:
            data_collator = DataCollatorForLanguageModeling(
                tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
            )
297

Julien Chaumond's avatar
Julien Chaumond committed
298
299
300
301
302
303
304
305
306
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
307

Julien Chaumond's avatar
Julien Chaumond committed
308
309
310
311
312
313
314
315
316
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
317
318
319
320
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
321

Julien Chaumond's avatar
Julien Chaumond committed
322
323
    # Evaluation
    results = {}
324
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
325
        logger.info("*** Evaluate ***")
326

Julien Chaumond's avatar
Julien Chaumond committed
327
        eval_output = trainer.evaluate()
328

329
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
330
        result = {"perplexity": perplexity}
331

Julien Chaumond's avatar
Julien Chaumond committed
332
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
333
334
335
336
337
338
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
339

Julien Chaumond's avatar
Julien Chaumond committed
340
        results.update(result)
341
342
343
344

    return results


345
346
347
348
349
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


350
if __name__ == "__main__":
altsoph's avatar
altsoph committed
351
    main()