test_tokenization_utils.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import os
16
import pickle
17
import tempfile
18
import unittest
19
from typing import Callable, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
20

21
22
import numpy as np

23
24
25
26
27
28
29
30
31
32
from transformers import (
    BatchEncoding,
    BertTokenizer,
    BertTokenizerFast,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
    TensorType,
    TokenSpan,
    is_tokenizers_available,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
34
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow
35

36

37
38
39
40
41
if is_tokenizers_available():
    from tokenizers import Tokenizer
    from tokenizers.models import WordPiece


42
class TokenizerUtilsTest(unittest.TestCase):
43
44
45
46
47
    def check_tokenizer_from_pretrained(self, tokenizer_class):
        s3_models = list(tokenizer_class.max_model_input_sizes.keys())
        for model_name in s3_models[:1]:
            tokenizer = tokenizer_class.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
48
            self.assertIsInstance(tokenizer, tokenizer_class)
49
50
            self.assertIsInstance(tokenizer, PreTrainedTokenizer)

51
            for special_tok in tokenizer.all_special_tokens:
Aymeric Augustin's avatar
Aymeric Augustin committed
52
                self.assertIsInstance(special_tok, str)
53
54
55
                special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
                self.assertIsInstance(special_tok_id, int)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
        batch_encoding_str = pickle.dumps(be_original)
        self.assertIsNotNone(batch_encoding_str)

        be_restored = pickle.loads(batch_encoding_str)

        # Ensure is_fast is correctly restored
        self.assertEqual(be_restored.is_fast, be_original.is_fast)

        # Ensure encodings are potentially correctly restored
        if be_original.is_fast:
            self.assertIsNotNone(be_restored.encodings)
        else:
            self.assertIsNone(be_restored.encodings)

        # Ensure the keys are the same
        for original_v, restored_v in zip(be_original.values(), be_restored.values()):
            if equal_op:
                self.assertTrue(equal_op(restored_v, original_v))
            else:
                self.assertEqual(restored_v, original_v)

78
    @slow
79
80
    def test_pretrained_tokenizers(self):
        self.check_tokenizer_from_pretrained(GPT2Tokenizer)
81

82
    def test_tensor_type_from_str(self):
83
84
85
        self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
        self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
        self.assertEqual(TensorType("np"), TensorType.NUMPY)
86

87
    @require_tokenizers
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    def test_batch_encoding_pickle(self):
        import numpy as np

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        # Python no tensor
        with self.subTest("BatchEncoding (Python, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_p("Small example to encode"))

        with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_r("Small example to encode"))

        with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

    @require_tf
112
    @require_tokenizers
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def test_batch_encoding_pickle_tf(self):
        import tensorflow as tf

        def tf_array_equals(t1, t2):
            return tf.reduce_all(tf.equal(t1, t2))

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

    @require_torch
133
    @require_tokenizers
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    def test_batch_encoding_pickle_pt(self):
        import torch

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

150
    @require_tokenizers
151
152
153
154
155
156
157
158
159
    def test_batch_encoding_is_fast(self):
        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("Python Tokenizer"):
            self.assertFalse(tokenizer_p("Small example to_encode").is_fast)

        with self.subTest("Rust Tokenizer"):
            self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
160

161
162
163
164
165
166
167
168
169
    @require_tokenizers
    def test_batch_encoding_word_to_tokens(self):
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
        encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)

        self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
        self.assertEqual(encoded.word_to_tokens(1), None)
        self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))

170
171
172
173
174
    def test_batch_encoding_with_labels(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
175
176
177
178
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
179
180
181
182
183
184
185
186
187
188
189
190

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_torch
    def test_batch_encoding_with_labels_pt(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
191
192
193
194
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
195
196
197
198
199
200
201
202
203
204
205
206

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_tf
    def test_batch_encoding_with_labels_tf(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
207
208
209
210
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
211
212
213
214
215
216

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    @require_flax
    def test_batch_encoding_with_labels_jax(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def test_padding_accepts_tensors(self):
        features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="np")
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_torch
    def test_padding_accepts_tensors_pt(self):
        import torch

        features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="pt")
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tf
    def test_padding_accepts_tensors_tf(self):
        import tensorflow as tf

        features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="tf")
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
271
272
273
274
275
276
277
278
279
280
281
282

    @require_tokenizers
    def test_instantiation_from_tokenizers(self):
        bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
        PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer)

    @require_tokenizers
    def test_instantiation_from_tokenizers_json_file(self):
        bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
        with tempfile.TemporaryDirectory() as tmpdirname:
            bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json"))
            PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json"))