Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
5e323017
Unverified
Commit
5e323017
authored
Oct 23, 2020
by
Anthony MOI
Committed by
GitHub
Oct 23, 2020
Browse files
Fix BatchEncoding.word_to_tokens for removed tokens (#7939)
parent
4acfd1a8
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
5 deletions
+16
-5
src/transformers/tokenization_utils_base.py
src/transformers/tokenization_utils_base.py
+6
-4
tests/test_tokenization_utils.py
tests/test_tokenization_utils.py
+10
-1
No files found.
src/transformers/tokenization_utils_base.py
View file @
5e323017
...
@@ -364,7 +364,7 @@ class BatchEncoding(UserDict):
...
@@ -364,7 +364,7 @@ class BatchEncoding(UserDict):
token_index
=
self
.
_seq_len
+
token_index
token_index
=
self
.
_seq_len
+
token_index
return
self
.
_encodings
[
batch_index
].
token_to_word
(
token_index
)
return
self
.
_encodings
[
batch_index
].
token_to_word
(
token_index
)
def
word_to_tokens
(
self
,
batch_or_word_index
:
int
,
word_index
:
Optional
[
int
]
=
None
)
->
TokenSpan
:
def
word_to_tokens
(
self
,
batch_or_word_index
:
int
,
word_index
:
Optional
[
int
]
=
None
)
->
Optional
[
TokenSpan
]
:
"""
"""
Get the encoded token span corresponding to a word in the sequence of the batch.
Get the encoded token span corresponding to a word in the sequence of the batch.
...
@@ -391,8 +391,9 @@ class BatchEncoding(UserDict):
...
@@ -391,8 +391,9 @@ class BatchEncoding(UserDict):
of the word in the sequence.
of the word in the sequence.
Returns:
Returns:
:class:`~transformers.tokenization_utils_base.TokenSpan`
Optional :class:`~transformers.tokenization_utils_base.TokenSpan`
Span of tokens in the encoded sequence.
Span of tokens in the encoded sequence. Returns :obj:`None` if no tokens correspond
to the word.
"""
"""
if
not
self
.
_encodings
:
if
not
self
.
_encodings
:
...
@@ -406,7 +407,8 @@ class BatchEncoding(UserDict):
...
@@ -406,7 +407,8 @@ class BatchEncoding(UserDict):
batch_index
=
self
.
_batch_size
+
batch_index
batch_index
=
self
.
_batch_size
+
batch_index
if
word_index
<
0
:
if
word_index
<
0
:
word_index
=
self
.
_seq_len
+
word_index
word_index
=
self
.
_seq_len
+
word_index
return
TokenSpan
(
*
(
self
.
_encodings
[
batch_index
].
word_to_tokens
(
word_index
)))
span
=
self
.
_encodings
[
batch_index
].
word_to_tokens
(
word_index
)
return
TokenSpan
(
*
span
)
if
span
is
not
None
else
None
def
token_to_chars
(
self
,
batch_or_token_index
:
int
,
token_index
:
Optional
[
int
]
=
None
)
->
CharSpan
:
def
token_to_chars
(
self
,
batch_or_token_index
:
int
,
token_index
:
Optional
[
int
]
=
None
)
->
CharSpan
:
"""
"""
...
...
tests/test_tokenization_utils.py
View file @
5e323017
...
@@ -18,7 +18,7 @@ from typing import Callable, Optional
...
@@ -18,7 +18,7 @@ from typing import Callable, Optional
import
numpy
as
np
import
numpy
as
np
from
transformers
import
BatchEncoding
,
BertTokenizer
,
BertTokenizerFast
,
PreTrainedTokenizer
,
TensorType
from
transformers
import
BatchEncoding
,
BertTokenizer
,
BertTokenizerFast
,
PreTrainedTokenizer
,
TensorType
,
TokenSpan
from
transformers.testing_utils
import
require_tf
,
require_tokenizers
,
require_torch
,
slow
from
transformers.testing_utils
import
require_tf
,
require_tokenizers
,
require_torch
,
slow
from
transformers.tokenization_gpt2
import
GPT2Tokenizer
from
transformers.tokenization_gpt2
import
GPT2Tokenizer
...
@@ -142,6 +142,15 @@ class TokenizerUtilsTest(unittest.TestCase):
...
@@ -142,6 +142,15 @@ class TokenizerUtilsTest(unittest.TestCase):
with
self
.
subTest
(
"Rust Tokenizer"
):
with
self
.
subTest
(
"Rust Tokenizer"
):
self
.
assertTrue
(
tokenizer_r
(
"Small example to_encode"
).
is_fast
)
self
.
assertTrue
(
tokenizer_r
(
"Small example to_encode"
).
is_fast
)
@
require_tokenizers
def
test_batch_encoding_word_to_tokens
(
self
):
tokenizer_r
=
BertTokenizerFast
.
from_pretrained
(
"bert-base-cased"
)
encoded
=
tokenizer_r
([
"Test"
,
"
\xad
"
,
"test"
],
is_split_into_words
=
True
)
self
.
assertEqual
(
encoded
.
word_to_tokens
(
0
),
TokenSpan
(
start
=
1
,
end
=
2
))
self
.
assertEqual
(
encoded
.
word_to_tokens
(
1
),
None
)
self
.
assertEqual
(
encoded
.
word_to_tokens
(
2
),
TokenSpan
(
start
=
2
,
end
=
3
))
def
test_batch_encoding_with_labels
(
self
):
def
test_batch_encoding_with_labels
(
self
):
batch
=
BatchEncoding
({
"inputs"
:
[[
1
,
2
,
3
],
[
4
,
5
,
6
]],
"labels"
:
[
0
,
1
]})
batch
=
BatchEncoding
({
"inputs"
:
[[
1
,
2
,
3
],
[
4
,
5
,
6
]],
"labels"
:
[
0
,
1
]})
tensor_batch
=
batch
.
convert_to_tensors
(
tensor_type
=
"np"
)
tensor_batch
=
batch
.
convert_to_tensors
(
tensor_type
=
"np"
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment