test_tokenization_utils.py 9.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import pickle
16
import unittest
17
from typing import Callable, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
18

19
20
import numpy as np

21
from transformers import BatchEncoding, BertTokenizer, BertTokenizerFast, PreTrainedTokenizer, TensorType
22
from transformers.testing_utils import require_tf, require_torch, slow
23
from transformers.tokenization_gpt2 import GPT2Tokenizer
24

25

26
class TokenizerUtilsTest(unittest.TestCase):
27
28
29
30
31
    def check_tokenizer_from_pretrained(self, tokenizer_class):
        s3_models = list(tokenizer_class.max_model_input_sizes.keys())
        for model_name in s3_models[:1]:
            tokenizer = tokenizer_class.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
32
            self.assertIsInstance(tokenizer, tokenizer_class)
33
34
            self.assertIsInstance(tokenizer, PreTrainedTokenizer)

35
            for special_tok in tokenizer.all_special_tokens:
Aymeric Augustin's avatar
Aymeric Augustin committed
36
                self.assertIsInstance(special_tok, str)
37
38
39
                special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
                self.assertIsInstance(special_tok_id, int)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
        batch_encoding_str = pickle.dumps(be_original)
        self.assertIsNotNone(batch_encoding_str)

        be_restored = pickle.loads(batch_encoding_str)

        # Ensure is_fast is correctly restored
        self.assertEqual(be_restored.is_fast, be_original.is_fast)

        # Ensure encodings are potentially correctly restored
        if be_original.is_fast:
            self.assertIsNotNone(be_restored.encodings)
        else:
            self.assertIsNone(be_restored.encodings)

        # Ensure the keys are the same
        for original_v, restored_v in zip(be_original.values(), be_restored.values()):
            if equal_op:
                self.assertTrue(equal_op(restored_v, original_v))
            else:
                self.assertEqual(restored_v, original_v)

62
    @slow
63
64
    def test_pretrained_tokenizers(self):
        self.check_tokenizer_from_pretrained(GPT2Tokenizer)
65

66
    def test_tensor_type_from_str(self):
67
68
69
        self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
        self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
        self.assertEqual(TensorType("np"), TensorType.NUMPY)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    def test_batch_encoding_pickle(self):
        import numpy as np

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        # Python no tensor
        with self.subTest("BatchEncoding (Python, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_p("Small example to encode"))

        with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_r("Small example to encode"))

        with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

    @require_tf
    def test_batch_encoding_pickle_tf(self):
        import tensorflow as tf

        def tf_array_equals(t1, t2):
            return tf.reduce_all(tf.equal(t1, t2))

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

    @require_torch
    def test_batch_encoding_pickle_pt(self):
        import torch

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

    def test_batch_encoding_is_fast(self):
        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("Python Tokenizer"):
            self.assertFalse(tokenizer_p("Small example to_encode").is_fast)

        with self.subTest("Rust Tokenizer"):
            self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

    def test_batch_encoding_with_labels(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_torch
    def test_batch_encoding_with_labels_pt(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_tf
    def test_batch_encoding_with_labels_tf(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    def test_padding_accepts_tensors(self):
        features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="np")
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_torch
    def test_padding_accepts_tensors_pt(self):
        import torch

        features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="pt")
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tf
    def test_padding_accepts_tensors_tf(self):
        import tensorflow as tf

        features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="tf")
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])