modeling_auto.py 35.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """

from __future__ import absolute_import, division, print_function, unicode_literals

import logging

21
22
23
24
25
26
27
28
from .modeling_bert import BertModel, BertForMaskedLM, BertForSequenceClassification, BertForQuestionAnswering
from .modeling_openai import OpenAIGPTModel, OpenAIGPTLMHeadModel
from .modeling_gpt2 import GPT2Model, GPT2LMHeadModel
from .modeling_transfo_xl import TransfoXLModel, TransfoXLLMHeadModel
from .modeling_xlnet import XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering
from .modeling_xlm import XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering
from .modeling_roberta import RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification
from .modeling_distilbert import DistilBertModel, DistilBertForQuestionAnswering, DistilBertForMaskedLM, DistilBertForSequenceClassification
thomwolf's avatar
thomwolf committed
29

30
from .modeling_utils import PreTrainedModel, SequenceSummary
thomwolf's avatar
thomwolf committed
31

32
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
33

34
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
35
36
37
38
39
40
41
42
43


class AutoModel(object):
    r"""
        :class:`~pytorch_transformers.AutoModel` is a generic model class
        that will be instantiated as one of the base model classes of the library
        when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
        class method.

44
        The `from_pretrained()` method takes care of returning the correct model class instance
thomwolf's avatar
thomwolf committed
45
46
47
48
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
49
            - contains `distilbert`: DistilBertModel (DistilBERT model)
50
            - contains `roberta`: RobertaModel (RoBERTa model)
51
52
53
54
55
56
            - contains `bert`: BertModel (Bert model)
            - contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
            - contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
            - contains `xlnet`: XLNetModel (XLNet model)
            - contains `xlm`: XLMModel (XLM model)
thomwolf's avatar
thomwolf committed
57

58
        This class cannot be instantiated using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
59
60
61
62
63
64
65
    """
    def __init__(self):
        raise EnvironmentError("AutoModel is designed to be instantiated "
            "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
66
        r""" Instantiates one of the base model classes of the library
thomwolf's avatar
thomwolf committed
67
68
        from a pre-trained model configuration.

thomwolf's avatar
thomwolf committed
69
        The model class to instantiate is selected as the first pattern matching
thomwolf's avatar
thomwolf committed
70
        in the `pretrained_model_name_or_path` string (in the following order):
71
            - contains `distilbert`: DistilBertModel (DistilBERT model)
72
            - contains `roberta`: RobertaModel (RoBERTa model)
73
74
75
76
77
78
            - contains `bert`: BertModel (Bert model)
            - contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
            - contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
            - contains `xlnet`: XLNetModel (XLNet model)
            - contains `xlm`: XLMModel (XLM model)
thomwolf's avatar
thomwolf committed
79

thomwolf's avatar
typos  
thomwolf committed
80
            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
thomwolf's avatar
thomwolf committed
81
82
83
            To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
102
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
103
104
105
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
106
107
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
124
125
126

        Examples::

thomwolf's avatar
thomwolf committed
127
128
129
130
131
132
133
            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
134
135

        """
thomwolf's avatar
thomwolf committed
136
137
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
LysandreJik's avatar
LysandreJik committed
138
        elif 'roberta' in pretrained_model_name_or_path:
139
140
            return RobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
155
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))
156
157
158
159
160
161
162
163
164
165
166
167
168
169


class AutoModelWithLMHead(object):
    r"""
        :class:`~pytorch_transformers.AutoModelWithLMHead` is a generic model class
        that will be instantiated as one of the language modeling model classes of the library
        when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
170
            - contains `distilbert`: DistilBertForMaskedLM (DistilBERT model)
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            - contains `roberta`: RobertaForMaskedLM (RoBERTa model)
            - contains `bert`: BertForMaskedLM (Bert model)
            - contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
            - contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
            - contains `xlnet`: XLNetLMHeadModel (XLNet model)
            - contains `xlm`: XLMWithLMHeadModel (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the language modeling model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
195
            - contains `distilbert`: DistilBertForMaskedLM (DistilBERT model)
196
197
198
199
200
201
202
203
204
205
206
207
            - contains `roberta`: RobertaForMaskedLM (RoBERTa model)
            - contains `bert`: BertForMaskedLM (Bert model)
            - contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
            - contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
            - contains `xlnet`: XLNetLMHeadModel (XLNet model)
            - contains `xlm`: XLMWithLMHeadModel (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
226
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
227
228
229
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
230
231
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
248
249
250
251
252
253
254
255
256
257
258
259

        Examples::

            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelWithLMHead.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
260
261
262
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'roberta' in pretrained_model_name_or_path:
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            return RobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))


class AutoModelForSequenceClassification(object):
    r"""
        :class:`~pytorch_transformers.AutoModelForSequenceClassification` is a generic model class
        that will be instantiated as one of the sequence classification model classes of the library
        when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
294
            - contains `distilbert`: DistilBertForSequenceClassification (DistilBERT model)
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
            - contains `roberta`: RobertaForSequenceClassification (RoBERTa model)
            - contains `bert`: BertForSequenceClassification (Bert model)
            - contains `xlnet`: XLNetForSequenceClassification (XLNet model)
            - contains `xlm`: XLMForSequenceClassification (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the sequence classification model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
316
            - contains `distilbert`: DistilBertForSequenceClassification (DistilBERT model)
317
318
319
320
321
322
323
324
325
            - contains `roberta`: RobertaForSequenceClassification (RoBERTa model)
            - contains `bert`: BertForSequenceClassification (Bert model)
            - contains `xlnet`: XLNetForSequenceClassification (XLNet model)
            - contains `xlm`: XLMForSequenceClassification (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
344
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
345
346
347
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
348
349
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
366
367
368
369
370
371
372
373
374
375
376
377

        Examples::

            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
378
379
380
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'roberta' in pretrained_model_name_or_path:
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            return RobertaForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path))


class AutoModelForQuestionAnswering(object):
    r"""
        :class:`~pytorch_transformers.AutoModelForQuestionAnswering` is a generic model class
        that will be instantiated as one of the question answering model classes of the library
        when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
405
            - contains `distilbert`: DistilBertForQuestionAnswering (DistilBERT model)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
            - contains `bert`: BertForQuestionAnswering (Bert model)
            - contains `xlnet`: XLNetForQuestionAnswering (XLNet model)
            - contains `xlm`: XLMForQuestionAnswering (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
426
            - contains `distilbert`: DistilBertForQuestionAnswering (DistilBERT model)
427
428
429
430
431
432
433
434
            - contains `bert`: BertForQuestionAnswering (Bert model)
            - contains `xlnet`: XLNetForQuestionAnswering (XLNet model)
            - contains `xlm`: XLMForQuestionAnswering (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
453
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
454
455
456
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
457
458
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
475
476
477
478
479
480
481
482
483
484
485
486

        Examples::

            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
487
488
489
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
490
491
492
493
494
495
496
497
            return BertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path))