modeling_auto.py 41.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """

from __future__ import absolute_import, division, print_function, unicode_literals

import logging

thomwolf's avatar
thomwolf committed
21
22
23
24
25
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn.parameter import Parameter

26
27
28
29
30
31
32
from .modeling_bert import BertConfig, BertModel, BertForMaskedLM, BertForSequenceClassification, BertForQuestionAnswering
from .modeling_openai import OpenAIGPTConfig, OpenAIGPTModel, OpenAIGPTLMHeadModel
from .modeling_gpt2 import GPT2Config, GPT2Model, GPT2LMHeadModel
from .modeling_transfo_xl import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
from .modeling_xlnet import XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering
from .modeling_xlm import XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering
from .modeling_roberta import RobertaConfig, RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification
thomwolf's avatar
thomwolf committed
33
from .modeling_distilbert import DistilBertConfig, DistilBertModel
thomwolf's avatar
thomwolf committed
34

thomwolf's avatar
thomwolf committed
35
from .modeling_utils import PreTrainedModel, SequenceSummary, add_start_docstrings
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
logger = logging.getLogger(__name__)

class AutoConfig(object):
    r""":class:`~pytorch_transformers.AutoConfig` is a generic configuration class
        that will be instantiated as one of the configuration classes of the library
        when created with the `AutoConfig.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method take care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)
56
            - contains `roberta`: RobertaConfig (RoBERTa model)
thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

        This class cannot be instantiated using `__init__()` (throw an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoConfig is designed to be instantiated "
            "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r""" Instantiate a one of the configuration classes of the library
        from a pre-trained model configuration.

        The configuration class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)
77
            - contains `roberta`: RobertaConfig (RoBERTa model)
thomwolf's avatar
thomwolf committed
78
79

        Params:
thomwolf's avatar
thomwolf committed
80
81
82
83
84
85
86
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
87
88
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

            kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.

                - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            return_unused_kwargs: (`optional`) bool:

thomwolf's avatar
thomwolf committed
104
                - If False, then this function returns just the final configuration object.
thomwolf's avatar
thomwolf committed
105
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
106
107
108

        Examples::

thomwolf's avatar
thomwolf committed
109
110
111
112
113
114
115
116
117
            config = AutoConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = AutoConfig.from_pretrained('./test/bert_saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
            config = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}
thomwolf's avatar
thomwolf committed
118
119

        """
thomwolf's avatar
thomwolf committed
120
121
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
LysandreJik's avatar
LysandreJik committed
122
        elif 'roberta' in pretrained_model_name_or_path:
123
124
            return RobertaConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
            return BertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Config.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
139
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
140
141
142
143
144
145
146
147
148


class AutoModel(object):
    r"""
        :class:`~pytorch_transformers.AutoModel` is a generic model class
        that will be instantiated as one of the base model classes of the library
        when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
        class method.

149
        The `from_pretrained()` method takes care of returning the correct model class instance
thomwolf's avatar
thomwolf committed
150
151
152
153
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
154
            - contains `roberta`: RobertaModel (RoBERTa model)
155
156
157
158
159
160
            - contains `bert`: BertModel (Bert model)
            - contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
            - contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
            - contains `xlnet`: XLNetModel (XLNet model)
            - contains `xlm`: XLMModel (XLM model)
thomwolf's avatar
thomwolf committed
161

162
        This class cannot be instantiated using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
163
164
165
166
167
168
169
    """
    def __init__(self):
        raise EnvironmentError("AutoModel is designed to be instantiated "
            "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
170
        r""" Instantiates one of the base model classes of the library
thomwolf's avatar
thomwolf committed
171
172
        from a pre-trained model configuration.

thomwolf's avatar
thomwolf committed
173
        The model class to instantiate is selected as the first pattern matching
thomwolf's avatar
thomwolf committed
174
        in the `pretrained_model_name_or_path` string (in the following order):
175
            - contains `roberta`: RobertaModel (RoBERTa model)
176
177
178
179
180
181
            - contains `bert`: BertModel (Bert model)
            - contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
            - contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
            - contains `xlnet`: XLNetModel (XLNet model)
            - contains `xlm`: XLMModel (XLM model)
thomwolf's avatar
thomwolf committed
182

thomwolf's avatar
typos  
thomwolf committed
183
            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
thomwolf's avatar
thomwolf committed
184
185
186
            To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
205
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
206
207
208
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
209
210
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
227
228
229

        Examples::

thomwolf's avatar
thomwolf committed
230
231
232
233
234
235
236
            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
237
238

        """
thomwolf's avatar
thomwolf committed
239
240
        if 'distilbert' in pretrained_model_name_or_path:
            return DistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
LysandreJik's avatar
LysandreJik committed
241
        elif 'roberta' in pretrained_model_name_or_path:
242
243
            return RobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
thomwolf's avatar
thomwolf committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
258
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309



class AutoModelWithLMHead(object):
    r"""
        :class:`~pytorch_transformers.AutoModelWithLMHead` is a generic model class
        that will be instantiated as one of the language modeling model classes of the library
        when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForMaskedLM (RoBERTa model)
            - contains `bert`: BertForMaskedLM (Bert model)
            - contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
            - contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
            - contains `xlnet`: XLNetLMHeadModel (XLNet model)
            - contains `xlm`: XLMWithLMHeadModel (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the language modeling model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForMaskedLM (RoBERTa model)
            - contains `bert`: BertForMaskedLM (Bert model)
            - contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
            - contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
            - contains `xlnet`: XLNetLMHeadModel (XLNet model)
            - contains `xlm`: XLMWithLMHeadModel (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
328
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
329
330
331
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
332
333
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

        Examples::

            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelWithLMHead.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'roberta' in pretrained_model_name_or_path:
            return RobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))


class AutoModelForSequenceClassification(object):
    r"""
        :class:`~pytorch_transformers.AutoModelForSequenceClassification` is a generic model class
        that will be instantiated as one of the sequence classification model classes of the library
        when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForSequenceClassification (RoBERTa model)
            - contains `bert`: BertForSequenceClassification (Bert model)
            - contains `xlnet`: XLNetForSequenceClassification (XLNet model)
            - contains `xlm`: XLMForSequenceClassification (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the sequence classification model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForSequenceClassification (RoBERTa model)
            - contains `bert`: BertForSequenceClassification (Bert model)
            - contains `xlnet`: XLNetForSequenceClassification (XLNet model)
            - contains `xlm`: XLMForSequenceClassification (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
442
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
443
444
445
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
446
447
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

        Examples::

            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'roberta' in pretrained_model_name_or_path:
            return RobertaForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path))


class AutoModelForQuestionAnswering(object):
    r"""
        :class:`~pytorch_transformers.AutoModelForQuestionAnswering` is a generic model class
        that will be instantiated as one of the question answering model classes of the library
        when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertForQuestionAnswering (Bert model)
            - contains `xlnet`: XLNetForQuestionAnswering (XLNet model)
            - contains `xlm`: XLMForQuestionAnswering (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertForQuestionAnswering (Bert model)
            - contains `xlnet`: XLNetForQuestionAnswering (XLNet model)
            - contains `xlm`: XLMForQuestionAnswering (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
547
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
548
549
550
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
551
552
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

        Examples::

            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'bert' in pretrained_model_name_or_path:
            return BertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path))