test_pipelines_token_classification.py 40.8 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
import numpy as np
18

19
20
21
22
23
24
25
26
27
from transformers import (
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    AutoModelForTokenClassification,
    AutoTokenizer,
    TokenClassificationPipeline,
    pipeline,
)
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
28
29
30
31
32
33
34
35
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_gpu,
    slow,
)
36

37
from .test_pipelines_common import ANY
38

39
40

VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
41

42
43
44
# These 2 model types require different inputs than those of the usual text models.
_TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"}

45

46
@is_pipeline_test
47
class TokenClassificationPipelineTests(unittest.TestCase):
48
49
    model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
50

51
    if model_mapping is not None:
52
        model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
53
    if tf_model_mapping is not None:
54
55
56
        tf_model_mapping = {
            config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
        }
57

58
    def get_test_pipeline(self, model, tokenizer, processor):
59
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
60
61
62
63
64
        return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]

    def run_pipeline_test(self, token_classifier, _):
        model = token_classifier.model
        tokenizer = token_classifier.tokenizer
Matt's avatar
Matt committed
65
66
        if not tokenizer.is_fast:
            return  # Slow tokenizers do not return offsets mappings, so this test will fail
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "index": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
        outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), 2)
        n = len(outputs[0])
        m = len(outputs[1])
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        self.assertEqual(
            nested_simplify(outputs),
            [
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(n)
                ],
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(m)
                ],
            ],
        )
118

119
        self.run_aggregation_strategy(model, tokenizer)
120

121
122
    def run_aggregation_strategy(self, model, tokenizer):
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
123
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
140

141
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
142
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
159

160
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
161
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
178

179
180
181
        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average"
        )
182
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
199

200
201
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
202
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
203
204
205
206
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(
                task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
207
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    @slow
    @require_torch
    def test_chunking(self):
        NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        tokenizer.model_max_length = 10
        stride = 5
        sentence = (
            "Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. "
            "The company, based in New York City was founded in 2016 by French entrepreneurs Cl茅ment Delangue, Julien Chaumond, and Thomas Wolf."
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

    @require_torch
    def test_chunking_fast(self):
        # Note: We cannot run the test on "conflicts" on the chunking.
        # The problem is that the model is random, and thus the results do heavily
        # depend on the chunking, so we cannot expect "abcd" and "bcd" to find
        # the same entities. We defer to slow tests for this.
        pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification")
        sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs"

        results = pipe(sentence, aggregation_strategy="first")
        # This is what this random model gives on the full sentence
        self.assertEqual(
            nested_simplify(results),
            [
                # This is 2 actual tokens
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

        # This will force the tokenizer to split after "city was".
        pipe.tokenizer.model_max_length = 12
        self.assertEqual(
            pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)),
            "[CLS] the company, based in new york city was [SEP]",
        )

        stride = 4
        results = pipe(sentence, aggregation_strategy="first", stride=stride)
        self.assertEqual(
            nested_simplify(results),
            [
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                # This is an extra entity found by this random model, but at least both original
                # entities are there
                {"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    @require_torch
    @slow
    def test_spanish_bert(self):
        # https://github.com/huggingface/transformers/pull/4987
        NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        sentence = """Consuelo Ara煤jo Noguera, ministra de cultura del presidente Andr茅s Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
                {"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
                {"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
                {"entity_group": "PER", "score": 0.966, "word": "##uelo Ara煤jo Noguera", "start": 4, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.966, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
            ],
        )

394
395
396
397
398
399
400
401
402
403
404
405
406
    @require_torch_gpu
    @slow
    def test_gpu(self):
        sentence = "This is dummy sentence"
        ner = pipeline(
            "token-classification",
            device=0,
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )

        output = ner(sentence)
        self.assertEqual(nested_simplify(output), [])

407
408
409
410
411
412
413
    @require_torch
    @slow
    def test_dbmdz_english(self):
        # Other sentence
        NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
Yulv-git's avatar
Yulv-git committed
414
        sentence = """Enzo works at the UN"""
415
416
417
418
419
        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
420
421
422
                {"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1},
                {"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2},
                {"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6},
423
424
425
426
427
428
429
430
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
431
432
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
433
434
435
436
437
438
439
440
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
441
442
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
443
444
445
446
447
448
449
450
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
451
452
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
453
454
455
456
457
458
459
460
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
461
462
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
463
464
465
            ],
        )

466
467
468
469
470
471
472
473
474
475
476
477
478
    @require_torch
    @slow
    def test_aggregation_strategy_byte_level_tokenizer(self):
        sentence = "Groenlinks praat over Schiphol."
        ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
                {"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
            ],
        )

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    @require_torch
    def test_aggregation_strategy_no_b_i_prefix(self):
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
        example = [
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359]),
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891]),
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
                # fmt: off
                "scores": np.array([0, 0, 0, 0.9986497163772583, 0]),
                # fmt: on
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

532
533
    @require_torch
    def test_aggregation_strategy(self):
534
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
                # fmt: off
                "scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
                # fmt: on
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

    @require_torch
    def test_aggregation_strategy_example2(self):
611
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # Necessary for AVERAGE
                "scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
                "is_subword": False,
                "index": 1,
                "word": "Ra",
                "start": 0,
                "end": 2,
            },
            {
                "scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
                "is_subword": True,
                "word": "##ma",
                "start": 2,
                "end": 4,
                "index": 2,
            },
            {
                # 4th score will have the higher average
                # 4th score is B-PER for this model
                # It's does not correspond to any of the subtokens.
                "scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
                "is_subword": True,
                "word": "##zotti",
                "start": 11,
                "end": 13,
                "index": 3,
            },
        ]
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.NONE),
            [
                {"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
                {"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
                {"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
            ],
        )

        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.FIRST),
            [{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.MAX),
            [{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
        )

671
672
673
674
675
676
677
678
679
680
681
682
683
684
    @require_torch
    @slow
    def test_aggregation_strategy_offsets_with_leading_space(self):
        sentence = "We're from New York"
        model_name = "brandon25/deberta-base-finetuned-ner"
        ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
                {"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
            ],
        )

685
686
    @require_torch
    def test_gather_pre_entities(self):
687
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
688
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
689
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

        sentence = "Hello there"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            truncation=True,
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        # First element in [CLS]
        scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])

707
        pre_entities = token_classifier.gather_pre_entities(
708
709
710
711
712
713
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.NONE,
714
        )
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        self.assertEqual(
            nested_simplify(pre_entities),
            [
                {"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
                {
                    "word": "there",
                    "scores": [0.8, 0.1, 0.1],
                    "index": 2,
                    "start": 6,
                    "end": 11,
                    "is_subword": False,
                },
            ],
        )
729

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
    @require_torch
    def test_word_heuristic_leading_space(self):
        model_name = "hf-internal-testing/tiny-random-deberta-v2"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")

        sentence = "I play the theremin"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        scores = np.array([[1, 0] for _ in input_ids])  # values irrelevant for heuristic

        pre_entities = token_classifier.gather_pre_entities(
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.FIRST,
        )

        # ensure expected tokenization and correct is_subword values
        self.assertEqual(
            [(entity["word"], entity["is_subword"]) for entity in pre_entities],
            [("鈻両", False), ("鈻乸lay", False), ("鈻乼he", False), ("鈻乼here", False), ("min", True)],
        )

765
766
    @require_tf
    def test_tf_only(self):
767
        model_name = "hf-internal-testing/tiny-random-bert-tf-only"  # This model only has a TensorFlow version
768
        # We test that if we don't specificy framework='tf', it gets detected automatically
769
        token_classifier = pipeline(task="ner", model=model_name)
770
        self.assertEqual(token_classifier.framework, "tf")
771
772

    @require_tf
773
    def test_small_model_tf(self):
774
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
775
776
777
778
779
780
781
782
783
        token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
784

785
786
    @require_torch
    def test_no_offset_tokenizer(self):
787
788
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
789
790
791
792
793
794
795
796
797
798
        token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
            ],
        )

799
800
    @require_torch
    def test_small_model_pt(self):
801
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
802
803
804
805
806
807
808
809
810
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
811

812
813
814
815
816
817
818
819
820
        token_classifier = pipeline(
            task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
        )
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [],
        )

821
822
823
824
825
826
827
828
829
830
831
832
833
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        # Overload offset_mapping
        outputs = token_classifier(
            "This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
        )
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
            ],
        )

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
        # Batch size does not affect outputs (attention_mask are required)
        sentences = ["This is a test !", "Another test this is with longer sentence"]
        outputs = token_classifier(sentences)
        outputs_batched = token_classifier(sentences, batch_size=2)
        # Batching does not make a difference in predictions
        self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
        self.assertEqual(
            nested_simplify(outputs_batched),
            [
                [
                    {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                    {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
                ],
                [],
            ],
        )

851
    @require_torch
852
    def test_pt_ignore_subwords_slow_tokenizer_raises(self):
853
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
854
855
856
857
858
859
860
861
862
863
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
        with self.assertRaises(ValueError):
            pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
            )
        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
864

865
866
867
    @slow
    @require_torch
    def test_simple(self):
868
        token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
869
870
        sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
        sentence2 = "This is a simple test"
871
        output = token_classifier(sentence)
872

873
        output_ = nested_simplify(output)
874
875

        self.assertEqual(
876
            output_,
877
878
879
880
881
882
883
884
885
886
887
888
889
            [
                {
                    "entity_group": "PER",
                    "score": 0.996,
                    "word": "Sarah Jessica Parker",
                    "start": 6,
                    "end": 26,
                },
                {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
            ],
        )

890
        output = token_classifier([sentence, sentence2])
891
        output_ = nested_simplify(output)
892
893
894
895
896
897
898
899
900
901
902
903
904

        self.assertEqual(
            output_,
            [
                [
                    {"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
                    {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                    {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
                ],
                [],
            ],
        )

905
906
907
908
909
910
911
912
913
914
915
916

class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self):
        self.args_parser = TokenClassificationArgumentHandler()

    def test_simple(self):
        string = "This is a simple input"

        inputs, offset_mapping = self.args_parser(string)
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, None)

917
        inputs, offset_mapping = self.args_parser([string, string])
918
919
920
921
922
923
924
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])

925
926
927
        inputs, offset_mapping = self.args_parser(
            [string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
        )
928
929
930
931
932
933
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

    def test_errors(self):
        string = "This is a simple input"

934
935
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
936
937
            self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])

938
939
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
940
941
            self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])

942
943
944
945
946
947
948
949
        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])

        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])

950
951
952
953
954
        # 1 sentences, 2 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

        # 0 sentences, 1 offset_mapping
955
        with self.assertRaises(TypeError):
956
            self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])