test_pipelines_token_classification.py 40.8 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
import numpy as np
18

19
20
21
22
23
24
25
26
27
from transformers import (
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    AutoModelForTokenClassification,
    AutoTokenizer,
    TokenClassificationPipeline,
    pipeline,
)
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
28
29
30
31
32
33
34
35
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_gpu,
    slow,
)
36

37
from .test_pipelines_common import ANY
38

39
40

VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
41

42
43
44
# These 2 model types require different inputs than those of the usual text models.
_TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"}

45

46
@is_pipeline_test
47
class TokenClassificationPipelineTests(unittest.TestCase):
48
49
    model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
50

51
52
53
54
55
    if model_mapping is not None:
        model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ in _TO_SKIP}
    if tf_model_mapping is not None:
        tf_model_mapping = {config: model for config, model in tf_model_mapping.items() if config.__name__ in _TO_SKIP}

56
    def get_test_pipeline(self, model, tokenizer, processor):
57
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
58
59
60
61
62
        return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]

    def run_pipeline_test(self, token_classifier, _):
        model = token_classifier.model
        tokenizer = token_classifier.tokenizer
Matt's avatar
Matt committed
63
64
        if not tokenizer.is_fast:
            return  # Slow tokenizers do not return offsets mappings, so this test will fail
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "index": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
        outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), 2)
        n = len(outputs[0])
        m = len(outputs[1])
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        self.assertEqual(
            nested_simplify(outputs),
            [
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(n)
                ],
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(m)
                ],
            ],
        )
116

117
        self.run_aggregation_strategy(model, tokenizer)
118

119
120
    def run_aggregation_strategy(self, model, tokenizer):
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
121
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
138

139
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
140
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
157

158
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
159
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
176

177
178
179
        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average"
        )
180
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
197

198
199
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
200
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
201
202
203
204
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(
                task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
205
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    @slow
    @require_torch
    def test_chunking(self):
        NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        tokenizer.model_max_length = 10
        stride = 5
        sentence = (
            "Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. "
            "The company, based in New York City was founded in 2016 by French entrepreneurs Cl茅ment Delangue, Julien Chaumond, and Thomas Wolf."
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

    @require_torch
    def test_chunking_fast(self):
        # Note: We cannot run the test on "conflicts" on the chunking.
        # The problem is that the model is random, and thus the results do heavily
        # depend on the chunking, so we cannot expect "abcd" and "bcd" to find
        # the same entities. We defer to slow tests for this.
        pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification")
        sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs"

        results = pipe(sentence, aggregation_strategy="first")
        # This is what this random model gives on the full sentence
        self.assertEqual(
            nested_simplify(results),
            [
                # This is 2 actual tokens
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

        # This will force the tokenizer to split after "city was".
        pipe.tokenizer.model_max_length = 12
        self.assertEqual(
            pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)),
            "[CLS] the company, based in new york city was [SEP]",
        )

        stride = 4
        results = pipe(sentence, aggregation_strategy="first", stride=stride)
        self.assertEqual(
            nested_simplify(results),
            [
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                # This is an extra entity found by this random model, but at least both original
                # entities are there
                {"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    @require_torch
    @slow
    def test_spanish_bert(self):
        # https://github.com/huggingface/transformers/pull/4987
        NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        sentence = """Consuelo Ara煤jo Noguera, ministra de cultura del presidente Andr茅s Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
                {"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
                {"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
                {"entity_group": "PER", "score": 0.966, "word": "##uelo Ara煤jo Noguera", "start": 4, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.966, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
            ],
        )

392
393
394
395
396
397
398
399
400
401
402
403
404
    @require_torch_gpu
    @slow
    def test_gpu(self):
        sentence = "This is dummy sentence"
        ner = pipeline(
            "token-classification",
            device=0,
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )

        output = ner(sentence)
        self.assertEqual(nested_simplify(output), [])

405
406
407
408
409
410
411
    @require_torch
    @slow
    def test_dbmdz_english(self):
        # Other sentence
        NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
Yulv-git's avatar
Yulv-git committed
412
        sentence = """Enzo works at the UN"""
413
414
415
416
417
        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
418
419
420
                {"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1},
                {"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2},
                {"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6},
421
422
423
424
425
426
427
428
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
429
430
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
431
432
433
434
435
436
437
438
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
439
440
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
441
442
443
444
445
446
447
448
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
449
450
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
451
452
453
454
455
456
457
458
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
459
460
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
461
462
463
            ],
        )

464
465
466
467
468
469
470
471
472
473
474
475
476
    @require_torch
    @slow
    def test_aggregation_strategy_byte_level_tokenizer(self):
        sentence = "Groenlinks praat over Schiphol."
        ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
                {"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
            ],
        )

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    @require_torch
    def test_aggregation_strategy_no_b_i_prefix(self):
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
        example = [
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359]),
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891]),
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
                # fmt: off
                "scores": np.array([0, 0, 0, 0.9986497163772583, 0]),
                # fmt: on
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

530
531
    @require_torch
    def test_aggregation_strategy(self):
532
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
                # fmt: off
                "scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
                # fmt: on
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

    @require_torch
    def test_aggregation_strategy_example2(self):
609
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # Necessary for AVERAGE
                "scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
                "is_subword": False,
                "index": 1,
                "word": "Ra",
                "start": 0,
                "end": 2,
            },
            {
                "scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
                "is_subword": True,
                "word": "##ma",
                "start": 2,
                "end": 4,
                "index": 2,
            },
            {
                # 4th score will have the higher average
                # 4th score is B-PER for this model
                # It's does not correspond to any of the subtokens.
                "scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
                "is_subword": True,
                "word": "##zotti",
                "start": 11,
                "end": 13,
                "index": 3,
            },
        ]
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.NONE),
            [
                {"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
                {"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
                {"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
            ],
        )

        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.FIRST),
            [{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.MAX),
            [{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
        )

669
670
671
672
673
674
675
676
677
678
679
680
681
682
    @require_torch
    @slow
    def test_aggregation_strategy_offsets_with_leading_space(self):
        sentence = "We're from New York"
        model_name = "brandon25/deberta-base-finetuned-ner"
        ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
                {"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
            ],
        )

683
684
    @require_torch
    def test_gather_pre_entities(self):
685
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
686
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
687
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

        sentence = "Hello there"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            truncation=True,
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        # First element in [CLS]
        scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])

705
        pre_entities = token_classifier.gather_pre_entities(
706
707
708
709
710
711
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.NONE,
712
        )
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        self.assertEqual(
            nested_simplify(pre_entities),
            [
                {"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
                {
                    "word": "there",
                    "scores": [0.8, 0.1, 0.1],
                    "index": 2,
                    "start": 6,
                    "end": 11,
                    "is_subword": False,
                },
            ],
        )
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    @require_torch
    def test_word_heuristic_leading_space(self):
        model_name = "hf-internal-testing/tiny-random-deberta-v2"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")

        sentence = "I play the theremin"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        scores = np.array([[1, 0] for _ in input_ids])  # values irrelevant for heuristic

        pre_entities = token_classifier.gather_pre_entities(
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.FIRST,
        )

        # ensure expected tokenization and correct is_subword values
        self.assertEqual(
            [(entity["word"], entity["is_subword"]) for entity in pre_entities],
            [("鈻両", False), ("鈻乸lay", False), ("鈻乼he", False), ("鈻乼here", False), ("min", True)],
        )

763
764
    @require_tf
    def test_tf_only(self):
765
        model_name = "hf-internal-testing/tiny-random-bert-tf-only"  # This model only has a TensorFlow version
766
        # We test that if we don't specificy framework='tf', it gets detected automatically
767
        token_classifier = pipeline(task="ner", model=model_name)
768
        self.assertEqual(token_classifier.framework, "tf")
769
770

    @require_tf
771
    def test_small_model_tf(self):
772
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
773
774
775
776
777
778
779
780
781
        token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
782

783
784
    @require_torch
    def test_no_offset_tokenizer(self):
785
786
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
787
788
789
790
791
792
793
794
795
796
        token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
            ],
        )

797
798
    @require_torch
    def test_small_model_pt(self):
799
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
800
801
802
803
804
805
806
807
808
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
809

810
811
812
813
814
815
816
817
818
        token_classifier = pipeline(
            task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
        )
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [],
        )

819
820
821
822
823
824
825
826
827
828
829
830
831
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        # Overload offset_mapping
        outputs = token_classifier(
            "This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
        )
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
            ],
        )

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
        # Batch size does not affect outputs (attention_mask are required)
        sentences = ["This is a test !", "Another test this is with longer sentence"]
        outputs = token_classifier(sentences)
        outputs_batched = token_classifier(sentences, batch_size=2)
        # Batching does not make a difference in predictions
        self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
        self.assertEqual(
            nested_simplify(outputs_batched),
            [
                [
                    {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                    {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
                ],
                [],
            ],
        )

849
    @require_torch
850
    def test_pt_ignore_subwords_slow_tokenizer_raises(self):
851
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
852
853
854
855
856
857
858
859
860
861
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
        with self.assertRaises(ValueError):
            pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
            )
        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
862

863
864
865
    @slow
    @require_torch
    def test_simple(self):
866
        token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
867
868
        sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
        sentence2 = "This is a simple test"
869
        output = token_classifier(sentence)
870

871
        output_ = nested_simplify(output)
872
873

        self.assertEqual(
874
            output_,
875
876
877
878
879
880
881
882
883
884
885
886
887
            [
                {
                    "entity_group": "PER",
                    "score": 0.996,
                    "word": "Sarah Jessica Parker",
                    "start": 6,
                    "end": 26,
                },
                {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
            ],
        )

888
        output = token_classifier([sentence, sentence2])
889
        output_ = nested_simplify(output)
890
891
892
893
894
895
896
897
898
899
900
901
902

        self.assertEqual(
            output_,
            [
                [
                    {"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
                    {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                    {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
                ],
                [],
            ],
        )

903
904
905
906
907
908
909
910
911
912
913
914

class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self):
        self.args_parser = TokenClassificationArgumentHandler()

    def test_simple(self):
        string = "This is a simple input"

        inputs, offset_mapping = self.args_parser(string)
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, None)

915
        inputs, offset_mapping = self.args_parser([string, string])
916
917
918
919
920
921
922
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])

923
924
925
        inputs, offset_mapping = self.args_parser(
            [string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
        )
926
927
928
929
930
931
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

    def test_errors(self):
        string = "This is a simple input"

932
933
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
934
935
            self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])

936
937
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
938
939
            self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])

940
941
942
943
944
945
946
947
        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])

        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])

948
949
950
951
952
        # 1 sentences, 2 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

        # 0 sentences, 1 offset_mapping
953
        with self.assertRaises(TypeError):
954
            self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])