test_pipelines_token_classification.py 40.3 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
import numpy as np
18

19
20
21
22
23
24
25
26
27
from transformers import (
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    AutoModelForTokenClassification,
    AutoTokenizer,
    TokenClassificationPipeline,
    pipeline,
)
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
28
29
30
31
32
33
34
35
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_torch_gpu,
    slow,
)
36

37
from .test_pipelines_common import ANY
38

39
40

VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
41
42


43
@is_pipeline_test
44
class TokenClassificationPipelineTests(unittest.TestCase):
45
46
    model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
47

48
    def get_test_pipeline(self, model, tokenizer, processor):
49
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
50
51
52
53
54
        return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]

    def run_pipeline_test(self, token_classifier, _):
        model = token_classifier.model
        tokenizer = token_classifier.tokenizer
Matt's avatar
Matt committed
55
56
        if not tokenizer.is_fast:
            return  # Slow tokenizers do not return offsets mappings, so this test will fail
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "index": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
        outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), 2)
        n = len(outputs[0])
        m = len(outputs[1])
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        self.assertEqual(
            nested_simplify(outputs),
            [
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(n)
                ],
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(m)
                ],
            ],
        )
108

109
        self.run_aggregation_strategy(model, tokenizer)
110

111
112
    def run_aggregation_strategy(self, model, tokenizer):
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
113
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
130

131
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
132
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
149

150
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
151
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
168

169
170
171
        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average"
        )
172
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
189

190
191
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
192
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
193
194
195
196
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(
                task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
197
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    @slow
    @require_torch
    def test_chunking(self):
        NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        tokenizer.model_max_length = 10
        stride = 5
        sentence = (
            "Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. "
            "The company, based in New York City was founded in 2016 by French entrepreneurs Cl茅ment Delangue, Julien Chaumond, and Thomas Wolf."
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

    @require_torch
    def test_chunking_fast(self):
        # Note: We cannot run the test on "conflicts" on the chunking.
        # The problem is that the model is random, and thus the results do heavily
        # depend on the chunking, so we cannot expect "abcd" and "bcd" to find
        # the same entities. We defer to slow tests for this.
        pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification")
        sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs"

        results = pipe(sentence, aggregation_strategy="first")
        # This is what this random model gives on the full sentence
        self.assertEqual(
            nested_simplify(results),
            [
                # This is 2 actual tokens
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

        # This will force the tokenizer to split after "city was".
        pipe.tokenizer.model_max_length = 12
        self.assertEqual(
            pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)),
            "[CLS] the company, based in new york city was [SEP]",
        )

        stride = 4
        results = pipe(sentence, aggregation_strategy="first", stride=stride)
        self.assertEqual(
            nested_simplify(results),
            [
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                # This is an extra entity found by this random model, but at least both original
                # entities are there
                {"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    @require_torch
    @slow
    def test_spanish_bert(self):
        # https://github.com/huggingface/transformers/pull/4987
        NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        sentence = """Consuelo Ara煤jo Noguera, ministra de cultura del presidente Andr茅s Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
                {"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
                {"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
                {"entity_group": "PER", "score": 0.966, "word": "##uelo Ara煤jo Noguera", "start": 4, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.966, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
            ],
        )

384
385
386
387
388
389
390
391
392
393
394
395
396
    @require_torch_gpu
    @slow
    def test_gpu(self):
        sentence = "This is dummy sentence"
        ner = pipeline(
            "token-classification",
            device=0,
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )

        output = ner(sentence)
        self.assertEqual(nested_simplify(output), [])

397
398
399
400
401
402
403
    @require_torch
    @slow
    def test_dbmdz_english(self):
        # Other sentence
        NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
Yulv-git's avatar
Yulv-git committed
404
        sentence = """Enzo works at the UN"""
405
406
407
408
409
        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
410
411
412
                {"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1},
                {"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2},
                {"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6},
413
414
415
416
417
418
419
420
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
421
422
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
423
424
425
426
427
428
429
430
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
431
432
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
433
434
435
436
437
438
439
440
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
441
442
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
443
444
445
446
447
448
449
450
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
451
452
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
453
454
455
            ],
        )

456
457
458
459
460
461
462
463
464
465
466
467
468
    @require_torch
    @slow
    def test_aggregation_strategy_byte_level_tokenizer(self):
        sentence = "Groenlinks praat over Schiphol."
        ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
                {"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
            ],
        )

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    @require_torch
    def test_aggregation_strategy_no_b_i_prefix(self):
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
        example = [
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359]),
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891]),
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
                # fmt: off
                "scores": np.array([0, 0, 0, 0.9986497163772583, 0]),
                # fmt: on
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

522
523
    @require_torch
    def test_aggregation_strategy(self):
524
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
                # fmt : off
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
                # fmt: off
                "scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
                # fmt: on
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

    @require_torch
    def test_aggregation_strategy_example2(self):
601
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # Necessary for AVERAGE
                "scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
                "is_subword": False,
                "index": 1,
                "word": "Ra",
                "start": 0,
                "end": 2,
            },
            {
                "scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
                "is_subword": True,
                "word": "##ma",
                "start": 2,
                "end": 4,
                "index": 2,
            },
            {
                # 4th score will have the higher average
                # 4th score is B-PER for this model
                # It's does not correspond to any of the subtokens.
                "scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
                "is_subword": True,
                "word": "##zotti",
                "start": 11,
                "end": 13,
                "index": 3,
            },
        ]
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.NONE),
            [
                {"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
                {"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
                {"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
            ],
        )

        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.FIRST),
            [{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.MAX),
            [{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
        )

661
662
663
664
665
666
667
668
669
670
671
672
673
674
    @require_torch
    @slow
    def test_aggregation_strategy_offsets_with_leading_space(self):
        sentence = "We're from New York"
        model_name = "brandon25/deberta-base-finetuned-ner"
        ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
                {"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
            ],
        )

675
676
    @require_torch
    def test_gather_pre_entities(self):
677
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
678
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
679
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

        sentence = "Hello there"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            truncation=True,
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        # First element in [CLS]
        scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])

697
        pre_entities = token_classifier.gather_pre_entities(
698
699
700
701
702
703
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.NONE,
704
        )
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        self.assertEqual(
            nested_simplify(pre_entities),
            [
                {"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
                {
                    "word": "there",
                    "scores": [0.8, 0.1, 0.1],
                    "index": 2,
                    "start": 6,
                    "end": 11,
                    "is_subword": False,
                },
            ],
        )
719

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    @require_torch
    def test_word_heuristic_leading_space(self):
        model_name = "hf-internal-testing/tiny-random-deberta-v2"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")

        sentence = "I play the theremin"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        scores = np.array([[1, 0] for _ in input_ids])  # values irrelevant for heuristic

        pre_entities = token_classifier.gather_pre_entities(
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.FIRST,
        )

        # ensure expected tokenization and correct is_subword values
        self.assertEqual(
            [(entity["word"], entity["is_subword"]) for entity in pre_entities],
            [("鈻両", False), ("鈻乸lay", False), ("鈻乼he", False), ("鈻乼here", False), ("min", True)],
        )

755
756
    @require_tf
    def test_tf_only(self):
757
        model_name = "hf-internal-testing/tiny-random-bert-tf-only"  # This model only has a TensorFlow version
758
        # We test that if we don't specificy framework='tf', it gets detected automatically
759
        token_classifier = pipeline(task="ner", model=model_name)
760
        self.assertEqual(token_classifier.framework, "tf")
761
762

    @require_tf
763
    def test_small_model_tf(self):
764
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
765
766
767
768
769
770
771
772
773
        token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
774

775
776
    @require_torch
    def test_no_offset_tokenizer(self):
777
778
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
779
780
781
782
783
784
785
786
787
788
        token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
            ],
        )

789
790
    @require_torch
    def test_small_model_pt(self):
791
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
792
793
794
795
796
797
798
799
800
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
801

802
803
804
805
806
807
808
809
810
        token_classifier = pipeline(
            task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
        )
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [],
        )

811
812
813
814
815
816
817
818
819
820
821
822
823
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        # Overload offset_mapping
        outputs = token_classifier(
            "This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
        )
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
            ],
        )

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
        # Batch size does not affect outputs (attention_mask are required)
        sentences = ["This is a test !", "Another test this is with longer sentence"]
        outputs = token_classifier(sentences)
        outputs_batched = token_classifier(sentences, batch_size=2)
        # Batching does not make a difference in predictions
        self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
        self.assertEqual(
            nested_simplify(outputs_batched),
            [
                [
                    {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                    {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
                ],
                [],
            ],
        )

841
    @require_torch
842
    def test_pt_ignore_subwords_slow_tokenizer_raises(self):
843
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
844
845
846
847
848
849
850
851
852
853
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
        with self.assertRaises(ValueError):
            pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
            )
        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
854

855
856
857
    @slow
    @require_torch
    def test_simple(self):
858
        token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
859
860
        sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
        sentence2 = "This is a simple test"
861
        output = token_classifier(sentence)
862

863
        output_ = nested_simplify(output)
864
865

        self.assertEqual(
866
            output_,
867
868
869
870
871
872
873
874
875
876
877
878
879
            [
                {
                    "entity_group": "PER",
                    "score": 0.996,
                    "word": "Sarah Jessica Parker",
                    "start": 6,
                    "end": 26,
                },
                {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
            ],
        )

880
        output = token_classifier([sentence, sentence2])
881
        output_ = nested_simplify(output)
882
883
884
885
886
887
888
889
890
891
892
893
894

        self.assertEqual(
            output_,
            [
                [
                    {"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
                    {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                    {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
                ],
                [],
            ],
        )

895
896
897
898
899
900
901
902
903
904
905
906

class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self):
        self.args_parser = TokenClassificationArgumentHandler()

    def test_simple(self):
        string = "This is a simple input"

        inputs, offset_mapping = self.args_parser(string)
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, None)

907
        inputs, offset_mapping = self.args_parser([string, string])
908
909
910
911
912
913
914
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])

915
916
917
        inputs, offset_mapping = self.args_parser(
            [string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
        )
918
919
920
921
922
923
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

    def test_errors(self):
        string = "This is a simple input"

924
925
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
926
927
            self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])

928
929
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
930
931
            self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])

932
933
934
935
936
937
938
939
        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])

        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])

940
941
942
943
944
        # 1 sentences, 2 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

        # 0 sentences, 1 offset_mapping
945
        with self.assertRaises(TypeError):
946
            self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])