"tests/models/xlm_roberta/__init__.py" did not exist on "0bab55d5d52e4d538888980d05d73acc6da6274a"
test_pipelines_image_segmentation.py 21.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
24
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
25
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
27
28
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
29
    AutoModelForInstanceSegmentation,
30
    DetrForSegmentation,
31
    ImageSegmentationPipeline,
32
    MaskFormerForInstanceSegmentation,
33
34
35
    is_vision_available,
    pipeline,
)
36
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
37
38
39
40
41
42
43
44
45
46
47
48
49
50

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


51
52
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
53
54
55
56
57
58
59
60
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
61
62


63
64
65
66
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
67
68
69
70
71
72
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
73
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
74
    }
75

76
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
77
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
78
79
80
81
82
83
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
84
85
86
87
88
89
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
90
91
        self.assertIsInstance(outputs, list)
        n = len(outputs)
92
93
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
94
95
96
97
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
98
99
100
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
101

102
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
103

104
        # RGBA
105
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
106
107
108
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
109
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
110
111
112
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
113
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
114
115
116
117
118
119
120
121
122
123
124
125
126
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
127
        batch = [
128
129
130
131
132
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
133
        ]
134
135
136
        outputs = image_segmenter(
            batch, threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0, batch_size=batch_size
        )
137
        self.assertEqual(len(batch), len(outputs))
138
        self.assertEqual(len(outputs[0]), n)
139
140
        self.assertEqual(
            [
141
142
143
144
145
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
146
            ],
147
148
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
149
150
151
152
153
154
155
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

179
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
180
    @unittest.skip("This test is broken for now")
181
    def test_small_model_pt(self):
182
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
183
184
185

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
186
187
188
        image_segmenter = ImageSegmentationPipeline(
            model=model,
            feature_extractor=feature_extractor,
189
190
191
192
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
193
194
        )

195
196
197
198
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

199
        # Shortening by hashing
200
        for o in outputs:
201
            o["mask"] = mask_to_test_readable(o["mask"])
202

203
        # This is extremely brittle, and those values are made specific for the CI.
204
205
206
207
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
208
                    "score": 0.004,
209
                    "label": "LABEL_215",
210
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
211
                },
212
            ],
213
214
215
216
217
218
219
220
221
222
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
223
                o["mask"] = mask_to_test_readable(o["mask"])
224
225
226
227
228
229

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
230
                        "score": 0.004,
231
                        "label": "LABEL_215",
232
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
233
234
235
236
                    },
                ],
                [
                    {
237
                        "score": 0.004,
238
                        "label": "LABEL_215",
239
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
240
                    },
241
                ],
242
243
244
            ],
        )

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
                    "mask": {"hash": "7f0bf661a4", "shape": (480, 640), "white_pixels": 3},
                    "score": None,
                },
                {
                    "label": "LABEL_101",
                    "mask": {"hash": "10ab738dc9", "shape": (480, 640), "white_pixels": 8948},
                    "score": None,
                },
                {
                    "label": "LABEL_215",
                    "mask": {"hash": "b431e0946c", "shape": (480, 640), "white_pixels": 298249},
                    "score": None,
                },
            ],
        )

287
288
289
290
291
292
293
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
294
            o["mask"] = mask_to_test_readable(o["mask"])
295
296
297
298

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
299
300
301
302
303
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
304
305
306
                {
                    "score": None,
                    "label": "LABEL_1",
307
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
308
309
310
311
                },
            ],
        )

312
313
314
315
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
316
317
318
319
320
321
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
322

323
324
325
326
327
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
328
        for o in outputs:
329
            o["mask"] = mask_to_test_readable(o["mask"])
330
331
332
333

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
364
365
366
367
368
369
370
371
372
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
373
374

        # Shortening by hashing
375
376
        for output in outputs:
            for o in output:
377
                o["mask"] = mask_to_test_readable(o["mask"])
378
379
380
381
382

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
413
414
                ],
                [
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
445
446
447
448
449
450
451
452
453
454
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

455
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
456
457
        # Shortening by hashing
        for o in outputs:
458
            o["mask"] = mask_to_test_readable(o["mask"])
459
460
461
462

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
463
464
465
466
467
468
469
470
471
472
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
473
474
475
            ],
        )

476
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
477
478

        for o in outputs:
479
            o["mask"] = mask_to_test_readable(o["mask"])
480
481
482
483

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
509
510
            ],
        )
511
512
513
514

    @require_torch
    @slow
    def test_maskformer(self):
515
        threshold = 0.8
516
517
        model_id = "facebook/maskformer-swin-base-ade"

518
519
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
520
521
522
523

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
524
        file = image[0]["file"]
525
        outputs = image_segmenter(file, threshold=threshold)
526

527
        # Shortening by hashing
528
        for o in outputs:
529
            o["mask"] = mask_to_test_readable(o["mask"])
530
531
532
533

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
569
570
            ],
        )