test_trainer_distributed.py 10.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from pathlib import Path
16
17
from typing import Dict

18
19
import numpy as np

20
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
21
22
23
24
25
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_torch_dist_unique_port,
    require_torch_multi_gpu,
26
    require_torch_multi_xpu,
27
    require_torch_neuroncore,
28
    require_torch_npu,
29
)
30
from transformers.training_args import ParallelMode
31
from transformers.utils import logging
32
33


34
logger = logging.get_logger(__name__)
35
36
37
38
39


if is_torch_available():
    import torch
    from torch import nn
40
    from torch.utils.data import Dataset, IterableDataset
41

42
    from transformers import Trainer
43
44
45
46
47
48
49
50
51
52
53

    class DummyDataset(Dataset):
        def __init__(self, length: int = 101):
            self.length = length

        def __len__(self):
            return self.length

        def __getitem__(self, i) -> int:
            return i

54
55
    class DummyDataCollator:
        def __call__(self, features):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
            return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)}

    class DummyModel(nn.Module):
        def __init__(self):
            super().__init__()
            # Add some (unused) params otherwise DDP will complain.
            self.fc = nn.Linear(120, 80)

        def forward(self, input_ids, labels=None):
            if labels is not None:
                return torch.tensor(0.0, device=input_ids.device), input_ids
            else:
                return input_ids

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    class RegressionModel(nn.Module):
        def __init__(self, a=0, b=0, double_output=False):
            super().__init__()
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
            self.double_output = double_output
            self.config = None

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
            loss = nn.functional.mse_loss(y, labels)
            return (loss, y, y) if self.double_output else (loss, y)

    class SampleIterableDataset(IterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)

        def __iter__(self):
            for i in range(len(self.dataset)):
                yield self.dataset[i]

    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

    class RegressionDataset:
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            np.random.seed(seed)
            self.label_names = ["labels"] if label_names is None else label_names
            self.length = length
            self.x = np.random.normal(size=(length,)).astype(np.float32)
            self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
            self.ys = [y.astype(np.float32) for y in self.ys]

        def __len__(self):
            return self.length

        def __getitem__(self, i):
            result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
            result["input_x"] = self.x[i]
            return result

120

121
122
123
class TestTrainerDistributedNeuronCore(TestCasePlus):
    @require_torch_neuroncore
    def test_trainer(self):
124
        distributed_args = f"""--nproc_per_node=2
125
126
127
128
129
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
130
        cmd = ["torchrun"] + distributed_args + args
131
132
133
134
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


135
136
137
138
139
140
141
142
143
144
145
146
147
148
class TestTrainerDistributedNPU(TestCasePlus):
    @require_torch_npu
    def test_trainer(self):
        distributed_args = f"""--nproc_per_node=2
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
        cmd = ["torchrun"] + distributed_args + args
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


149
class TestTrainerDistributed(TestCasePlus):
150
    @require_torch_multi_gpu
151
    def test_trainer(self):
152
        distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
153
            --master_port={get_torch_dist_unique_port()}
154
155
156
157
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
158
        cmd = ["torchrun"] + distributed_args + args
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


@require_torch_multi_xpu
class TestTrainerDistributedXPU(TestCasePlus):
    def test_trainer(self):
        distributed_args = f"""--nproc_per_node={torch.xpu.device_count()}
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
        cmd = ["torchrun"] + distributed_args + args
173
174
175
176
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


177
if __name__ == "__main__":
178
179
    # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
    #
180
    # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
181

182
    parser = HfArgumentParser((TrainingArguments,))
Sylvain Gugger's avatar
Sylvain Gugger committed
183
    training_args = parser.parse_args_into_dataclasses()[0]
184
185

    logger.warning(
186
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
187
        f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"
188
189
    )

190
191
    # Essentially, what we want to verify in the distributed case is that we get all samples back,
    # in the right order. (this is crucial for prediction for instance)
192
193
194
195
196
197
    for dataset_length in [101, 40, 7]:
        dataset = DummyDataset(dataset_length)

        def compute_metrics(p: EvalPrediction) -> Dict:
            sequential = list(range(len(dataset)))
            success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
198
199
200
201
202
            if not success and training_args.local_rank == 0:
                logger.warning(
                    "Predictions and/or labels do not match expected results:\n  - predictions: "
                    f"{p.predictions.tolist()}\n  - labels: {p.label_ids.tolist()}\n  - expected: {sequential}"
                )
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
            return {"success": success}

        trainer = Trainer(
            model=DummyModel(),
            args=training_args,
            data_collator=DummyDataCollator(),
            eval_dataset=dataset,
            compute_metrics=compute_metrics,
        )
        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
220
        if p.metrics["test_success"] is not True:
221
222
223
            logger.error(p.metrics)
            exit(1)

224
        trainer.args.eval_accumulation_steps = 2
225
226
227
228
229
230
231
232
233

        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
234
        if p.metrics["test_success"] is not True:
235
236
237
            logger.error(p.metrics)
            exit(1)

238
        trainer.args.eval_accumulation_steps = None
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
    # Check that saving does indeed work with temp dir rotation
    # If this fails, will see a FileNotFoundError
    model = RegressionModel()
    training_args.max_steps = 1
    opt = torch.optim.Adam(model.parameters(), lr=1e-3)
    sched = torch.optim.lr_scheduler.LambdaLR(opt, lambda x: 1)
    trainer = Trainer(
        model, training_args, optimizers=(opt, sched), data_collator=DummyDataCollator(), eval_dataset=dataset
    )
    trainer._save_checkpoint(model=None, trial=None)
    # Check that the temp folder does not exist
    assert not (Path(training_args.output_dir) / "tmp-checkpoint-0").exists()
    assert (Path(training_args.output_dir) / "checkpoint-0").exists()

254
255
256
257
258
    # Check that `dispatch_batches=False` will work on a finite iterable dataset

    train_dataset = FiniteIterableDataset(label_names=["labels", "extra"], length=1)

    model = RegressionModel()
259
260
261
    training_args.per_device_train_batch_size = 1
    training_args.max_steps = 1
    training_args.dispatch_batches = False
262
263
    trainer = Trainer(model, training_args, train_dataset=train_dataset)
    trainer.train()