test_trainer_distributed.py 6.19 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
from typing import Dict

from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
18
19
20
21
22
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_torch_dist_unique_port,
    require_torch_multi_gpu,
23
    require_torch_neuroncore,
24
    require_torch_npu,
25
)
26
from transformers.training_args import ParallelMode
27
from transformers.utils import logging
28
29


30
logger = logging.get_logger(__name__)
31
32
33
34
35


if is_torch_available():
    import torch
    from torch import nn
36
    from torch.utils.data import Dataset
37

38
    from transformers import Trainer
39
40
41
42
43
44
45
46
47
48
49

    class DummyDataset(Dataset):
        def __init__(self, length: int = 101):
            self.length = length

        def __len__(self):
            return self.length

        def __getitem__(self, i) -> int:
            return i

50
51
    class DummyDataCollator:
        def __call__(self, features):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
            return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)}

    class DummyModel(nn.Module):
        def __init__(self):
            super().__init__()
            # Add some (unused) params otherwise DDP will complain.
            self.fc = nn.Linear(120, 80)

        def forward(self, input_ids, labels=None):
            if labels is not None:
                return torch.tensor(0.0, device=input_ids.device), input_ids
            else:
                return input_ids


67
68
69
class TestTrainerDistributedNeuronCore(TestCasePlus):
    @require_torch_neuroncore
    def test_trainer(self):
70
        distributed_args = f"""--nproc_per_node=2
71
72
73
74
75
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
76
        cmd = ["torchrun"] + distributed_args + args
77
78
79
80
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


81
82
83
84
85
86
87
88
89
90
91
92
93
94
class TestTrainerDistributedNPU(TestCasePlus):
    @require_torch_npu
    def test_trainer(self):
        distributed_args = f"""--nproc_per_node=2
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
        cmd = ["torchrun"] + distributed_args + args
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


95
class TestTrainerDistributed(TestCasePlus):
96
    @require_torch_multi_gpu
97
    def test_trainer(self):
98
        distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
99
            --master_port={get_torch_dist_unique_port()}
100
101
102
103
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
104
        cmd = ["torchrun"] + distributed_args + args
105
106
107
108
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


109
if __name__ == "__main__":
110
111
    # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
    #
112
    # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
113

114
    parser = HfArgumentParser((TrainingArguments,))
Sylvain Gugger's avatar
Sylvain Gugger committed
115
    training_args = parser.parse_args_into_dataclasses()[0]
116
117

    logger.warning(
118
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
119
        f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"
120
121
    )

122
123
    # Essentially, what we want to verify in the distributed case is that we get all samples back,
    # in the right order. (this is crucial for prediction for instance)
124
125
126
127
128
129
    for dataset_length in [101, 40, 7]:
        dataset = DummyDataset(dataset_length)

        def compute_metrics(p: EvalPrediction) -> Dict:
            sequential = list(range(len(dataset)))
            success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
130
131
132
133
134
            if not success and training_args.local_rank == 0:
                logger.warning(
                    "Predictions and/or labels do not match expected results:\n  - predictions: "
                    f"{p.predictions.tolist()}\n  - labels: {p.label_ids.tolist()}\n  - expected: {sequential}"
                )
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            return {"success": success}

        trainer = Trainer(
            model=DummyModel(),
            args=training_args,
            data_collator=DummyDataCollator(),
            eval_dataset=dataset,
            compute_metrics=compute_metrics,
        )
        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
152
        if p.metrics["test_success"] is not True:
153
154
155
            logger.error(p.metrics)
            exit(1)

156
157
158
159
160
161
162
163
164
165
        trainer.args.eval_accumulation_steps = 2

        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
166
        if p.metrics["test_success"] is not True:
167
168
169
170
            logger.error(p.metrics)
            exit(1)

        trainer.args.eval_accumulation_steps = None