test_trainer_distributed.py 8.73 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
from typing import Dict

17
18
import numpy as np

19
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
20
21
22
23
24
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_torch_dist_unique_port,
    require_torch_multi_gpu,
25
    require_torch_neuroncore,
26
    require_torch_npu,
27
)
28
from transformers.training_args import ParallelMode
29
from transformers.utils import logging
30
31


32
logger = logging.get_logger(__name__)
33
34
35
36
37


if is_torch_available():
    import torch
    from torch import nn
38
    from torch.utils.data import Dataset, IterableDataset
39

40
    from transformers import Trainer
41
42
43
44
45
46
47
48
49
50
51

    class DummyDataset(Dataset):
        def __init__(self, length: int = 101):
            self.length = length

        def __len__(self):
            return self.length

        def __getitem__(self, i) -> int:
            return i

52
53
    class DummyDataCollator:
        def __call__(self, features):
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)}

    class DummyModel(nn.Module):
        def __init__(self):
            super().__init__()
            # Add some (unused) params otherwise DDP will complain.
            self.fc = nn.Linear(120, 80)

        def forward(self, input_ids, labels=None):
            if labels is not None:
                return torch.tensor(0.0, device=input_ids.device), input_ids
            else:
                return input_ids

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    class RegressionModel(nn.Module):
        def __init__(self, a=0, b=0, double_output=False):
            super().__init__()
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
            self.double_output = double_output
            self.config = None

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
            loss = nn.functional.mse_loss(y, labels)
            return (loss, y, y) if self.double_output else (loss, y)

    class SampleIterableDataset(IterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)

        def __iter__(self):
            for i in range(len(self.dataset)):
                yield self.dataset[i]

    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

    class RegressionDataset:
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            np.random.seed(seed)
            self.label_names = ["labels"] if label_names is None else label_names
            self.length = length
            self.x = np.random.normal(size=(length,)).astype(np.float32)
            self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
            self.ys = [y.astype(np.float32) for y in self.ys]

        def __len__(self):
            return self.length

        def __getitem__(self, i):
            result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
            result["input_x"] = self.x[i]
            return result

118

119
120
121
class TestTrainerDistributedNeuronCore(TestCasePlus):
    @require_torch_neuroncore
    def test_trainer(self):
122
        distributed_args = f"""--nproc_per_node=2
123
124
125
126
127
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
128
        cmd = ["torchrun"] + distributed_args + args
129
130
131
132
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


133
134
135
136
137
138
139
140
141
142
143
144
145
146
class TestTrainerDistributedNPU(TestCasePlus):
    @require_torch_npu
    def test_trainer(self):
        distributed_args = f"""--nproc_per_node=2
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
        cmd = ["torchrun"] + distributed_args + args
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


147
class TestTrainerDistributed(TestCasePlus):
148
    @require_torch_multi_gpu
149
    def test_trainer(self):
150
        distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
151
            --master_port={get_torch_dist_unique_port()}
152
153
154
155
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
156
        cmd = ["torchrun"] + distributed_args + args
157
158
159
160
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


161
if __name__ == "__main__":
162
163
    # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
    #
164
    # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
165

166
    parser = HfArgumentParser((TrainingArguments,))
Sylvain Gugger's avatar
Sylvain Gugger committed
167
    training_args = parser.parse_args_into_dataclasses()[0]
168
169

    logger.warning(
170
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
171
        f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"
172
173
    )

174
175
    # Essentially, what we want to verify in the distributed case is that we get all samples back,
    # in the right order. (this is crucial for prediction for instance)
176
177
178
179
180
181
    for dataset_length in [101, 40, 7]:
        dataset = DummyDataset(dataset_length)

        def compute_metrics(p: EvalPrediction) -> Dict:
            sequential = list(range(len(dataset)))
            success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
182
183
184
185
186
            if not success and training_args.local_rank == 0:
                logger.warning(
                    "Predictions and/or labels do not match expected results:\n  - predictions: "
                    f"{p.predictions.tolist()}\n  - labels: {p.label_ids.tolist()}\n  - expected: {sequential}"
                )
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            return {"success": success}

        trainer = Trainer(
            model=DummyModel(),
            args=training_args,
            data_collator=DummyDataCollator(),
            eval_dataset=dataset,
            compute_metrics=compute_metrics,
        )
        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
204
        if p.metrics["test_success"] is not True:
205
206
207
            logger.error(p.metrics)
            exit(1)

208
        trainer.args.eval_accumulation_steps = 2
209
210
211
212
213
214
215
216
217

        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
218
        if p.metrics["test_success"] is not True:
219
220
221
            logger.error(p.metrics)
            exit(1)

222
        trainer.args.eval_accumulation_steps = None
223
224
225
226
227
228

    # Check that `dispatch_batches=False` will work on a finite iterable dataset

    train_dataset = FiniteIterableDataset(label_names=["labels", "extra"], length=1)

    model = RegressionModel()
229
230
231
    training_args.per_device_train_batch_size = 1
    training_args.max_steps = 1
    training_args.dispatch_batches = False
232
233
    trainer = Trainer(model, training_args, train_dataset=train_dataset)
    trainer.train()