test_tokenization_common.py 196 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import inspect
18
import itertools
19
import json
thomwolf's avatar
thomwolf committed
20
import os
21
import pickle
22
import re
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import shutil
24
import sys
25
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
26
import unittest
27
from collections import OrderedDict
28
from itertools import takewhile
29
from pathlib import Path
30
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
31

32
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from requests.exceptions import HTTPError
34
from transformers import (
35
36
    AlbertTokenizer,
    AlbertTokenizerFast,
37
    AutoTokenizer,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    BertTokenizer,
39
    BertTokenizerFast,
40
41
42
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
43
    SpecialTokensMixin,
44
45
    Trainer,
    TrainingArguments,
46
    is_tf_available,
47
    is_tokenizers_available,
48
49
    is_torch_available,
)
50
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
51
52
    PASS,
    USER,
53
54
    get_tests_dir,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
55
    is_staging_test,
56
57
58
59
60
    require_tf,
    require_tokenizers,
    require_torch,
    slow,
)
61
from transformers.tokenization_utils import AddedToken, Trie
62

63

64
65
66
67
if is_torch_available():
    import torch.nn as nn


68
if TYPE_CHECKING:
69
    from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel
70
71


72
73
74
75
76
77
78
79
80
sys.path.append(str(Path(__file__).parent.parent / "utils"))

from test_module.custom_tokenization import CustomTokenizer  # noqa E402


if is_tokenizers_available():
    from test_module.custom_tokenization_fast import CustomTokenizerFast


81
82
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]

83
84
85
86
87
SMALL_TRAINING_CORPUS = [
    ["This is the first sentence.", "This is the second one."],
    ["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."],
]

88
89

def filter_non_english(_, pretrained_name: str):
Patrick von Platen's avatar
Patrick von Platen committed
90
    """Filter all the model for non-english language"""
91
92
93
94
95
96
97
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])


def filter_roberta_detectors(_, pretrained_name: str):
    return "detector" not in pretrained_name


98
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
99
100
101
102
103
104
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
105
106
107
108
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
109
110
111
112
113
114
115
116
        if configuration in model_mapping and configuration in tokenizer_mapping:
            model = model_mapping[configuration]
            tokenizer = tokenizer_mapping[configuration][0]
            tokenizer_fast = tokenizer_mapping[configuration][1]

            model_tokenizer_mapping.update({tokenizer: (configuration, model)})
            if tokenizer_fast is not None:
                model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})
117
118
119
120

    return model_tokenizer_mapping


121
class TokenizerTesterMixin:
122

123
    tokenizer_class = None
124
    rust_tokenizer_class = None
125
126
    test_slow_tokenizer = True
    test_rust_tokenizer = True
127
    space_between_special_tokens = False
128
129
130
    from_pretrained_kwargs = None
    from_pretrained_filter = None
    from_pretrained_vocab_key = "vocab_file"
131
    test_seq2seq = True
132

133
134
135
136
137
138
139
    # set to True to test a sentencepiece tokenizer
    test_sentencepiece = False

    # set to True to ignore casing when testing a sentencepiece tokenizer
    # test_sentencepiece must also be set to True
    test_sentencepiece_ignore_case = False

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def setUp(self) -> None:
        # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
        # information available in Tokenizer (name, rust class, python class, vocab key name)
        if self.test_rust_tokenizer:
            tokenizers_list = [
                (
                    self.rust_tokenizer_class,
                    pretrained_name,
                    self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {},
                )
                for pretrained_name in self.rust_tokenizer_class.pretrained_vocab_files_map[
                    self.from_pretrained_vocab_key
                ].keys()
                if self.from_pretrained_filter is None
                or (self.from_pretrained_filter is not None and self.from_pretrained_filter(pretrained_name))
            ]
            self.tokenizers_list = tokenizers_list[:1]  # Let's just test the first pretrained vocab for speed
        else:
            self.tokenizers_list = []
        with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
161

162
        self.tmpdirname = tempfile.mkdtemp()
163

164
165
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
166

167
168
169
170
    def get_input_output_texts(self, tokenizer):
        input_txt = self.get_clean_sequence(tokenizer)[0]
        return input_txt, input_txt

171
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
172
173
174
175
176
        toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
177
178
179
        if min_length is not None and len(toks) < min_length and len(toks) > 0:
            while len(toks) < min_length:
                toks = toks + toks
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

196
    def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]:
197
        if fast and self.test_rust_tokenizer and self.test_slow_tokenizer:
198
            return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
199
200
201
202
203
204
        elif fast and self.test_rust_tokenizer:
            return [self.get_rust_tokenizer(**kwargs)]
        elif self.test_slow_tokenizer:
            return [self.get_tokenizer(**kwargs)]
        else:
            raise ValueError("This tokenizer class has no tokenizer to be tested.")
205

206
207
    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
208

209
    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
210
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def tokenizer_integration_test_util(
        self,
        expected_encoding: Dict,
        model_name: str,
        revision: str = None,
        sequences: List[str] = None,
        decode_kwargs: Dict[str, Any] = None,
        padding: bool = True,
    ):
        """
        Util for integration test.

        Text is tokenized and then reverted back to text. Both results are then checked.

        Args:
            expected_encoding:
                The expected result of the tokenizer output.
            model_name:
                The model name of the tokenizer to load and use.
            revision:
                The full git revision number of the model. This is to pin the
                tokenizer config and to avoid that tests start to fail if the
                config gets changed upstream.
            sequences:
                Can overwrite the texts that are used to check the tokenizer.
                This is useful if the tokenizer supports non english languages
                like france.
            decode_kwargs:
                Additional args for the ``decode`` function which reverts the
                tokenized text back to a string.
            padding:
                Activates and controls padding of the tokenizer.
        """
        decode_kwargs = {} if decode_kwargs is None else decode_kwargs

        if sequences is None:
            sequences = [
                "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
                "general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
                "Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained "
                "models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.",
                "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
                "conditioning on both left and right context in all layers.",
                "The quick brown fox jumps over the lazy dog.",
            ]

258
259
260
        if self.test_sentencepiece_ignore_case:
            sequences = [sequence.lower() for sequence in sequences]

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        tokenizer_classes = [self.tokenizer_class]
        if self.test_rust_tokenizer:
            tokenizer_classes.append(self.rust_tokenizer_class)

        for tokenizer_class in tokenizer_classes:
            tokenizer = tokenizer_class.from_pretrained(
                model_name,
                revision=revision,  # to pin the tokenizer version
            )

            encoding = tokenizer(sequences, padding=padding)
            decoded_sequences = [
                tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"]
            ]

            encoding_data = encoding.data
            self.assertDictEqual(encoding_data, expected_encoding)

            for expected, decoded in zip(sequences, decoded_sequences):
                if self.test_sentencepiece_ignore_case:
                    expected = expected.lower()
                self.assertEqual(expected, decoded)
thomwolf's avatar
thomwolf committed
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int):
        # Ensure we match max_length
        self.assertEqual(len(input_r), max_length)
        self.assertEqual(len(input_p), max_length)

        # Ensure the number of padded tokens is the same
        padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r)))
        padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p)))
        self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)

    def assert_batch_padded_input_match(
        self,
        input_r: dict,
        input_p: dict,
        max_length: int,
        pad_token_id: int,
        model_main_input_name: str = "input_ids",
    ):
        for i_r in input_r.values():
            self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                len(i_r[1]), max_length
            )
            self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                len(i_r[1]), max_length
            )

        for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]):
            self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id)

        for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
            self.assertSequenceEqual(i_r, i_p)

316
317
318
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
319
        # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
320
321
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
322
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
323
324
        ]

325
326
327
    # TODO: this test can be combined with `test_sentencepiece_tokenize_and_convert_tokens_to_string` after the latter is extended to all tokenizers.
    def test_tokenize_special_tokens(self):
        """Test `tokenize` with special tokens."""
328
        tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]"
                SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]"

                # TODO:
                # Can we combine `unique_no_split_tokens` and `all_special_tokens`(and properties related to it)
                # with one variable(property) for a better maintainability?

                # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
                tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True)
                # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
                # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
                tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]})

                token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1)
                token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2)

                self.assertEqual(len(token_1), 1)
                self.assertEqual(len(token_2), 1)
                self.assertEqual(token_1[0], SPECIAL_TOKEN_1)
                self.assertEqual(token_2[0], SPECIAL_TOKEN_2)

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    # TODO: this test could be extended to all tokenizers - not just the sentencepiece
    def test_sentencepiece_tokenize_and_convert_tokens_to_string(self):
        """Test ``_tokenize`` and ``convert_tokens_to_string``."""
        if not self.test_sentencepiece:
            return

        tokenizer = self.get_tokenizer()
        text = "This is text to test the tokenizer."

        if self.test_sentencepiece_ignore_case:
            text = text.lower()

        tokens = tokenizer.tokenize(text)

        self.assertTrue(len(tokens) > 0)

        # check if converting back to original text works
        reverse_text = tokenizer.convert_tokens_to_string(tokens)

        if self.test_sentencepiece_ignore_case:
            reverse_text = reverse_text.lower()

        self.assertEqual(reverse_text, text)

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    def test_subword_regularization_tokenizer(self) -> None:
        if not self.test_sentencepiece:
            return

        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)

        self.assertTrue(hasattr(tokenizer, "sp_model_kwargs"))
        self.assertIsNotNone(tokenizer.sp_model_kwargs)
        self.assertTrue(isinstance(tokenizer.sp_model_kwargs, dict))
        self.assertEqual(tokenizer.sp_model_kwargs, sp_model_kwargs)
        self.check_subword_sampling(tokenizer)

    def test_pickle_subword_regularization_tokenizer(self) -> None:
        if not self.test_sentencepiece:
            return

        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)
        tokenizer_bin = pickle.dumps(tokenizer)
        del tokenizer
        tokenizer_new = pickle.loads(tokenizer_bin)

        self.assertTrue(hasattr(tokenizer_new, "sp_model_kwargs"))
        self.assertIsNotNone(tokenizer_new.sp_model_kwargs)
        self.assertTrue(isinstance(tokenizer_new.sp_model_kwargs, dict))
        self.assertEqual(tokenizer_new.sp_model_kwargs, sp_model_kwargs)
        self.check_subword_sampling(tokenizer_new)

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    def test_save_sentencepiece_tokenizer(self) -> None:
        if not self.test_sentencepiece or not self.test_slow_tokenizer:
            return
        # We want to verify that we will be able to save the tokenizer even if the original files that were used to
        # build the tokenizer have been deleted in the meantime.
        text = "This is text to test the tokenizer."

        tokenizer_slow_1 = self.get_tokenizer()
        encoding_tokenizer_slow_1 = tokenizer_slow_1(text)

        tmpdirname_1 = tempfile.mkdtemp()
        tmpdirname_2 = tempfile.mkdtemp()

        tokenizer_slow_1.save_pretrained(tmpdirname_1)
        tokenizer_slow_2 = self.tokenizer_class.from_pretrained(tmpdirname_1)
        encoding_tokenizer_slow_2 = tokenizer_slow_2(text)

        shutil.rmtree(tmpdirname_1)
        tokenizer_slow_2.save_pretrained(tmpdirname_2)

        tokenizer_slow_3 = self.tokenizer_class.from_pretrained(tmpdirname_2)
        encoding_tokenizer_slow_3 = tokenizer_slow_3(text)
        shutil.rmtree(tmpdirname_2)

        self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_2)
        self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_3)

435
436
437
438
439
440
441
442
443
444
445
446
    def test_model_input_names_signature(self):
        accepted_model_main_input_names = [
            "input_ids",  # nlp models
            "input_values",  # speech models
        ]

        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            # first name of model_input_names has to correspond to main model input name
            # to make sure `tokenizer.pad(...)` works correctly
            self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names)

447
448
449
450
451
452
453
454
455
    def test_rust_tokenizer_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)

        self.assertIn("tokenizer_file", signature.parameters)
        self.assertIsNone(signature.parameters["tokenizer_file"].default)

456
    def test_tokenizer_slow_store_full_signature(self):
457
458
459
        if not self.test_slow_tokenizer:
            return

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        signature = inspect.signature(self.tokenizer_class.__init__)
        tokenizer = self.get_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)

    def test_tokenizer_fast_store_full_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)
        tokenizer = self.get_rust_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
475
476
477
478
479
            if parameter.default != inspect.Parameter.empty and parameter_name not in [
                "vocab_file",
                "merges_file",
                "tokenizer_file",
            ]:
480
481
                self.assertIn(parameter_name, tokenizer.init_kwargs)

482
483
484
485
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

486
487
488
489
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence, _ = self.get_input_output_texts(tokenizer)

        # We don't have an exact equivalence on `tokenize()` between Rust and Slow
        # Slow tokenizer only split tokens, Rust tokenizers will replace with <unk>
        # tokens = tokenizer.tokenize(sequence)
        # rust_tokens = rust_tokenizer.tokenize(sequence)
        # self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        ids = tokenizer.encode(sequence, add_special_tokens=True)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True)
        self.assertListEqual(ids, rust_ids)

509
    def test_tokenizers_common_properties(self):
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
                    self.assertTrue(hasattr(tokenizer, attr + "_id"))

                self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
                self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))

                attributes_list = [
                    "model_max_length",
                    "init_inputs",
                    "init_kwargs",
                ]
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    attributes_list += [
                        "added_tokens_encoder",
                        "added_tokens_decoder",
                    ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
541

542
543
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
544
        tokenizers = self.get_tokenizers()
545
546
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
Stas Bekman's avatar
Stas Bekman committed
547
                self.assertNotEqual(tokenizer.model_max_length, 42)
548

549
        # Now let's start the test
550
        tokenizers = self.get_tokenizers()
551
552
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
553
554
555
556
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
557
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
558
559
560
561
562
563
564
565
566
567
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)
568

569
570
571
572
573
574
575
576
577
578
579
580
581
582
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)
583

584
585
586
                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
587
                self.assertListEqual(before_tokens, after_tokens)
588
589
590
591
592
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)
593

594
                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
595
                self.assertEqual(tokenizer.model_max_length, 43)
596

597
598
                shutil.rmtree(tmpdirname)

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        # Test that we can also use the non-legacy saving format for fast tokenizers
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

632
    def test_pickle_tokenizer(self):
633
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
634
635
636
637
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertIsNotNone(tokenizer)
638

639
640
                text = "Munich and Berlin are nice cities"
                subwords = tokenizer.tokenize(text)
641

642
643
644
                filename = os.path.join(self.tmpdirname, "tokenizer.bin")
                with open(filename, "wb") as handle:
                    pickle.dump(tokenizer, handle)
645

646
647
                with open(filename, "rb") as handle:
                    tokenizer_new = pickle.load(handle)
648

649
                subwords_loaded = tokenizer_new.tokenize(text)
650

651
                self.assertListEqual(subwords, subwords_loaded)
652

653
    @require_tokenizers
Anthony MOI's avatar
Anthony MOI committed
654
655
656
657
658
659
    def test_pickle_added_tokens(self):
        tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True)
        tok2 = pickle.loads(pickle.dumps(tok1))

        self.assertEqual(tok1.__getstate__(), tok2.__getstate__())

660
    def test_added_tokens_do_lower_case(self):
661
        tokenizers = self.get_tokenizers(do_lower_case=True)
662
663
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
664
665
666
                if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
                    continue

667
                special_token = tokenizer.all_special_tokens[0]
668

669
670
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
671

672
                toks_before_adding = tokenizer.tokenize(text)  # toks before adding new_toks
673

674
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
675
                added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
676

677
678
                toks_after_adding = tokenizer.tokenize(text)
                toks_after_adding2 = tokenizer.tokenize(text2)
679

680
681
682
683
684
685
686
687
                # Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`,
                # while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3.
                self.assertIn(added, [2, 4])

                self.assertListEqual(toks_after_adding, toks_after_adding2)
                self.assertTrue(
                    len(toks_before_adding) > len(toks_after_adding),  # toks_before_adding should be longer
                )
688

689
690
                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
691
692
693
694
                # Convert the tokenized list to str as some special tokens are tokenized like normal tokens
                # which have a prefix spacee e.g. the mask token of Albert, and cannot match the original
                # special tokens exactly.
                tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens))
695

696
697
                for special_token in tokenizer.all_special_tokens:
                    self.assertTrue(special_token in tokenized_sequence)
698

699
        tokenizers = self.get_tokenizers(do_lower_case=True)
700
701
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
702
703
704
                if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
                    continue

705
                special_token = tokenizer.all_special_tokens[0]
706

707
708
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
709

710
                toks_before_adding = tokenizer.tokenize(text)  # toks before adding new_toks
thomwolf's avatar
thomwolf committed
711

712
713
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
714
                self.assertIn(added, [2, 4])
715

716
717
                toks_after_adding = tokenizer.tokenize(text)
                toks_after_adding2 = tokenizer.tokenize(text2)
718

719
720
721
722
723
724
725
                self.assertEqual(len(toks_after_adding), len(toks_after_adding2))  # Length should still be the same
                self.assertNotEqual(
                    toks_after_adding[1], toks_after_adding2[1]
                )  # But at least the first non-special tokens should differ
                self.assertTrue(
                    len(toks_before_adding) > len(toks_after_adding),  # toks_before_adding should be longer
                )
726

727
728
729
730
731
732
733
734
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)
735
736
737
738

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)
777

778
    def test_add_special_tokens(self):
779
780
781
782
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)
783

784
                special_token = "[SPECIAL_TOKEN]"
785

786
787
788
                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)
789

790
791
                text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
                encoded = tokenizer.encode(text, add_special_tokens=False)
792

793
794
795
                input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
                special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(encoded, input_encoded + special_token_id)
796

797
798
                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)
799

800
    def test_internal_consistency(self):
801
802
803
804
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, output_text = self.get_input_output_texts(tokenizer)
805

806
807
808
809
                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
                self.assertListEqual(ids, ids_2)
810

811
812
813
814
                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)
815

816
                self.assertEqual(text_2, output_text)
817

818
    @require_tokenizers
819
    def test_encode_decode_with_spaces(self):
820
821
822
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
LysandreJik's avatar
LysandreJik committed
823

824
825
826
827
828
                new_toks = [
                    AddedToken("[ABC]", normalized=False),
                    AddedToken("[DEF]", normalized=False),
                    AddedToken("GHI IHG", normalized=False),
                ]
829
                tokenizer.add_tokens(new_toks)
830
                input = "[ABC][DEF][ABC]GHI IHG[DEF]"
831
                if self.space_between_special_tokens:
832
                    output = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
833
834
                else:
                    output = input
835
                encoded = tokenizer.encode(input, add_special_tokens=False)
836
837
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
                self.assertIn(decoded, [output, output.lower()])
838

839
    def test_pretrained_model_lists(self):
840
841
842
843
844
845
846
847
848
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)
        self.assertEqual(
            len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]),
            len(self.tokenizer_class.max_model_input_sizes),
        )

849
850
851
852
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
853

854
855
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
856

857
    def test_mask_output(self):
858
        tokenizers = self.get_tokenizers(do_lower_case=False)
859
860
861
862
863
864
865
866
867
868
869
870
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

                if (
                    tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
                    and "token_type_ids" in tokenizer.model_input_names
                ):
                    seq_0 = "Test this method."
                    seq_1 = "With these inputs."
                    information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
                    sequences, mask = information["input_ids"], information["token_type_ids"]
                    self.assertEqual(len(sequences), len(mask))
871

872
873
874
875
876
877
878
879
    def test_token_type_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
NielsRogge's avatar
NielsRogge committed
880
                # (regardless of whether the model use token type ids)
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(seq_0, return_token_type_ids=True)
                self.assertIn(0, output["token_type_ids"])

    def test_sequence_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."
                seq_1 = "With these inputs."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
NielsRogge's avatar
NielsRogge committed
896
                # (regardless of whether the model use token type ids)
897
898
899
900
901
902
903
904
905
906
907
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(seq_0)
                self.assertIn(0, output.sequence_ids())

                output = tokenizer(seq_0, seq_1)
                self.assertIn(0, output.sequence_ids())
                self.assertIn(1, output.sequence_ids())

                if tokenizer.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, output.sequence_ids())

908
    def test_number_of_added_tokens(self):
909
910
911
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
912

913
914
                seq_0 = "Test this method."
                seq_1 = "With these inputs."
915

916
                sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
917
                attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
918

919
920
921
922
923
                # Method is implemented (e.g. not GPT-2)
                if len(attached_sequences) != 2:
                    self.assertEqual(
                        tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
                    )
924
925

    def test_maximum_encoding_length_single_input(self):
926
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
927
928
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
929
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
930
931
932

                sequence = tokenizer.encode(seq_0, add_special_tokens=False)
                total_length = len(sequence)
933

Nicolas Patry's avatar
Nicolas Patry committed
934
                self.assertGreater(total_length, 4, "Issue with the testing sequence, please update it it's too short")
935
936
937
938
939
940
941
942

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_1 = seq_0 * model_max_length

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
Nicolas Patry's avatar
Nicolas Patry committed
943
944
945
                self.assertGreater(
                    total_length1, model_max_length, "Issue with the testing sequence, please update it it's too short"
                )
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
                    with self.subTest(f"Padding: {padding_state}"):
                        for truncation_state in [True, "longest_first", "only_first"]:
                            with self.subTest(f"Truncation: {truncation_state}"):
                                output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
                        # Reset warnings
                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer(seq_1, padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )

                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer([seq_1], padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )
984
985
986
987

                # Overflowing tokens
                stride = 2
                information = tokenizer(
988
989
990
991
992
993
                    seq_0,
                    max_length=total_length - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
994
                    # add_prefix_space=False,
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]
1011

1012
1013
                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])
1014

1015
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
1016
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
1017

1018
    def test_maximum_encoding_length_pair_input(self):
1019
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
1020
1021
1022
1023
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Build a sequence from our model's vocabulary
                stride = 2
1024
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
1025
                if len(ids) <= 2 + stride:
1026
1027
                    seq_0 = (seq_0 + " ") * (2 + stride)
                    ids = None
1028
1029

                seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
Nicolas Patry's avatar
Nicolas Patry committed
1030
                self.assertGreater(len(seq0_tokens), 2 + stride)
1031
1032
1033

                seq_1 = "This is another sentence to be encoded."
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
1034
                if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2:
1035
1036
1037
1038
                    seq1_tokens = seq1_tokens + seq1_tokens
                    seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False)
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

Nicolas Patry's avatar
Nicolas Patry committed
1039
                self.assertGreater(len(seq1_tokens), 2 + stride)
1040
1041
1042
1043
1044

                smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens

                # We are not using the special tokens - a bit too hard to test all the tokenizers with this
                # TODO try this again later
1045
                sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)  # , add_prefix_space=False)
1046
1047
1048
1049
1050

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_2 = seq_0 * model_max_length
Nicolas Patry's avatar
Nicolas Patry committed
1051
                self.assertGreater(len(seq_2), model_max_length)
1052
1053
1054
1055
1056

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False)
                total_length2 = len(sequence2["input_ids"])
Nicolas Patry's avatar
Nicolas Patry committed
1057
1058
1059
1060
1061
1062
                self.assertLess(
                    total_length1, model_max_length - 10, "Issue with the testing sequence, please update it."
                )
                self.assertGreater(
                    total_length2, model_max_length, "Issue with the testing sequence, please update it."
                )
1063
1064
1065
1066
1067
1068

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
1069
                    with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"):
1070
                        for truncation_state in [True, "longest_first", "only_first"]:
1071
                            with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"):
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
                                output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer(
                                    [seq_2], [seq_1], padding=padding_state, truncation=truncation_state
                                )
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
                        # Reset warnings
                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )

                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )
1110

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
                truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode(
                    seq_1, add_special_tokens=False
                )
                truncated_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[:-2]
                )
                truncated_longest_sequence = (
                    truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence
                )

                overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[
                    -(2 + stride) :
                ] + tokenizer.encode(seq_1, add_special_tokens=False)
                overflow_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :]
                )
                overflow_longest_sequence = (
                    overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
                    information = tokenizer(
                        seq_0,
                        seq_1,
                        max_length=len(sequence) - 2,
                        add_special_tokens=False,
                        stride=stride,
                        truncation="longest_first",
                        return_overflowing_tokens=True,
                        # add_prefix_space=False,
                    )
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
                    # No overflowing tokens when using 'longest' in python tokenizers
                    with self.assertRaises(ValueError) as context:
                        information = tokenizer(
                            seq_0,
                            seq_1,
                            max_length=len(sequence) - 2,
                            add_special_tokens=False,
                            stride=stride,
                            truncation="longest_first",
                            return_overflowing_tokens=True,
                            # add_prefix_space=False,
                        )
1167

1168
1169
1170
1171
1172
1173
1174
                    self.assertTrue(
                        context.exception.args[0].startswith(
                            "Not possible to return overflowing tokens for pair of sequences with the "
                            "`longest_first`. Please select another truncation strategy than `longest_first`, "
                            "for instance `only_second` or `only_first`."
                        )
                    )
1175
1176

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
1177
                if isinstance(tokenizer, PreTrainedTokenizerFast):
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
                    information = tokenizer(
                        seq_0,
                        seq_1,
                        max_length=len(sequence) - 2,
                        add_special_tokens=False,
                        stride=stride,
                        truncation=True,
                        return_overflowing_tokens=True,
                        # add_prefix_space=False,
                    )
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
                    # No overflowing tokens when using 'longest' in python tokenizers
                    with self.assertRaises(ValueError) as context:
                        information = tokenizer(
                            seq_0,
                            seq_1,
                            max_length=len(sequence) - 2,
                            add_special_tokens=False,
                            stride=stride,
                            truncation=True,
                            return_overflowing_tokens=True,
                            # add_prefix_space=False,
                        )
1210

1211
1212
1213
1214
1215
1216
1217
                    self.assertTrue(
                        context.exception.args[0].startswith(
                            "Not possible to return overflowing tokens for pair of sequences with the "
                            "`longest_first`. Please select another truncation strategy than `longest_first`, "
                            "for instance `only_second` or `only_first`."
                        )
                    )
1218

1219
                information_first_truncated = tokenizer(
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_first",
                    return_overflowing_tokens=True,
                    # add_prefix_space=False,
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_first_truncated["input_ids"][0]
                    overflowing_tokens = information_first_truncated["input_ids"][1]
                    self.assertEqual(len(information_first_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens))
                    self.assertEqual(overflowing_tokens, overflow_first_sequence)
                else:
                    truncated_sequence = information_first_truncated["input_ids"]
                    overflowing_tokens = information_first_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :])

1250
                information_second_truncated = tokenizer(
1251
1252
1253
1254
1255
1256
1257
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_second",
                    return_overflowing_tokens=True,
1258
                    # add_prefix_space=False,
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_second_truncated["input_ids"][0]
                    overflowing_tokens = information_second_truncated["input_ids"][1]
                    self.assertEqual(len(information_second_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens))
                    self.assertEqual(overflowing_tokens, overflow_second_sequence)
                else:
                    truncated_sequence = information_second_truncated["input_ids"]
                    overflowing_tokens = information_second_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)
1277

1278
1279
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :])
1280

1281
1282
1283
1284
1285
    # def test_encode_input_type(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             sequence = "Let's encode this sequence"
1286

1287
1288
1289
    #             tokens = sequence.split()  # tokenizer.tokenize(sequence)
    #             # input_ids = tokenizer.convert_tokens_to_ids(tokens)
    #             formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
1290

1291
    #             self.assertEqual(
1292
    #                 tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input
1293
1294
1295
    #             )
    #             # This is not supported with the Rust tokenizers
    #             # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
1296

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
    # def test_swap_special_token(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             # Our mask token
    #             mask = "<mask>"
    #             # We take a single word in the middle of the vocabulary
    #             all_tokens = sorted(tokenizer.get_vocab().keys())
    #             word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1])

    #             sequence_0 = "Encode " + word + " sequence"
    #             sequence_masked_0 = "Encode " + mask + " sequence"

    #             sequence_1 = word + " this sequence"
    #             sequence_masked_1 = mask + " this sequence"

    #             # Add tokens so that masked token isn't split
    #             # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()]
    #             # tokenizer.add_tokens(tokens)
    #             tokenizer.add_special_tokens(
    #                 {"mask_token": AddedToken(mask, normalized=False)}
    #             )  # Eat left space on Byte-level BPE tokenizers
    #             mask_ind = tokenizer.convert_tokens_to_ids(mask)

    #             # Test first masked sequence
    #             encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
Nicolas Patry's avatar
Nicolas Patry committed
1324
    #             self.assertEqual(len(encoded_masked), len(encoded_0))
1325
1326
1327
1328
1329
1330
1331
1332
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_0[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_0)

    #             # Test second masked sequence
    #             encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
Nicolas Patry's avatar
Nicolas Patry committed
1333
    #             self.assertEqual(len(encoded_masked), len(encoded_1))
1334
1335
1336
1337
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_1[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_1)
1338

1339
    def test_special_tokens_mask(self):
1340
1341
1342
1343
1344
1345
1346
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                # Testing single inputs
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
1347
                    sequence_0, add_special_tokens=True, return_special_tokens_mask=True  # , add_prefix_space=False
1348
1349
1350
1351
1352
1353
1354
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
                self.assertEqual(encoded_sequence, filtered_sequence)
1355

1356
    def test_special_tokens_mask_input_pairs(self):
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
1369
                    # add_prefix_space=False,
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)
1380

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    def test_padding_side_in_kwargs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                if self.test_rust_tokenizer:
                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, padding_side="left", **kwargs
                    )
                    self.assertEqual(tokenizer_r.padding_side, "left")

                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, padding_side="right", **kwargs
                    )
                    self.assertEqual(tokenizer_r.padding_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.rust_tokenizer_class.from_pretrained,
                        pretrained_name,
                        padding_side="unauthorized",
                        **kwargs,
                    )

                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="left", **kwargs)
                    self.assertEqual(tokenizer_p.padding_side, "left")

                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="right", **kwargs)
                    self.assertEqual(tokenizer_p.padding_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.tokenizer_class.from_pretrained,
                        pretrained_name,
                        padding_side="unauthorized",
                        **kwargs,
                    )

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
    def test_truncation_side_in_kwargs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                if self.test_rust_tokenizer:
                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="left", **kwargs
                    )
                    self.assertEqual(tokenizer_r.truncation_side, "left")

                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="right", **kwargs
                    )
                    self.assertEqual(tokenizer_r.truncation_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.rust_tokenizer_class.from_pretrained,
                        pretrained_name,
                        truncation_side="unauthorized",
                        **kwargs,
                    )

                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="left", **kwargs
                    )
                    self.assertEqual(tokenizer_p.truncation_side, "left")

                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="right", **kwargs
                    )
                    self.assertEqual(tokenizer_p.truncation_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.tokenizer_class.from_pretrained,
                        pretrained_name,
                        truncation_side="unauthorized",
                        **kwargs,
                    )

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
    def test_right_and_left_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
Nicolas Patry's avatar
Nicolas Patry committed
1479
1480
                self.assertEqual(sequence_length + padding_size, padded_sequence_length)
                self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
1481
1482
1483
1484
1485
1486
1487
1488
1489

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "left"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
Nicolas Patry's avatar
Nicolas Patry committed
1490
1491
                self.assertEqual(sequence_length + padding_size, padded_sequence_length)
                self.assertEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence)
1492
1493
1494
1495
1496
1497
1498
1499

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, padding=True)
                padded_sequence_right_length = len(padded_sequence_right)
Nicolas Patry's avatar
Nicolas Patry committed
1500
1501
                self.assertEqual(sequence_length, padded_sequence_right_length)
                self.assertEqual(encoded_sequence, padded_sequence_right)
1502
1503
1504
1505

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding="longest")
                padded_sequence_left_length = len(padded_sequence_left)
Nicolas Patry's avatar
Nicolas Patry committed
1506
1507
                self.assertEqual(sequence_length, padded_sequence_left_length)
                self.assertEqual(encoded_sequence, padded_sequence_left)
1508
1509
1510
1511

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence)
                padded_sequence_right_length = len(padded_sequence_right)
Nicolas Patry's avatar
Nicolas Patry committed
1512
1513
                self.assertEqual(sequence_length, padded_sequence_right_length)
                self.assertEqual(encoded_sequence, padded_sequence_right)
1514
1515
1516
1517

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding=False)
                padded_sequence_left_length = len(padded_sequence_left)
Nicolas Patry's avatar
Nicolas Patry committed
1518
1519
                self.assertEqual(sequence_length, padded_sequence_left_length)
                self.assertEqual(encoded_sequence, padded_sequence_left)
1520

1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
    def test_right_and_left_truncation(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "This is a test sequence"

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                truncation_size = 3
                tokenizer.truncation_side = "right"
                encoded_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                sequence_length = len(encoded_sequence)
                # Remove EOS/BOS tokens
                truncated_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False
                )
                truncated_sequence_length = len(truncated_sequence)
                self.assertEqual(sequence_length, truncated_sequence_length + truncation_size)
                self.assertEqual(encoded_sequence[:-truncation_size], truncated_sequence)

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the truncation flag set to True
                tokenizer.truncation_side = "left"
                sequence_length = len(encoded_sequence)
                truncated_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False
                )
                truncated_sequence_length = len(truncated_sequence)
                self.assertEqual(sequence_length, truncated_sequence_length + truncation_size)
                self.assertEqual(encoded_sequence[truncation_size:], truncated_sequence)

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_truncation'
                sequence_length = len(encoded_sequence)

                tokenizer.truncation_side = "right"
                truncated_sequence_right = tokenizer.encode(sequence, truncation=True, add_special_tokens=False)
                truncated_sequence_right_length = len(truncated_sequence_right)
                self.assertEqual(sequence_length, truncated_sequence_right_length)
                self.assertEqual(encoded_sequence, truncated_sequence_right)

                tokenizer.truncation_side = "left"
                truncated_sequence_left = tokenizer.encode(
                    sequence, truncation="longest_first", add_special_tokens=False
                )
                truncated_sequence_left_length = len(truncated_sequence_left)
                self.assertEqual(sequence_length, truncated_sequence_left_length)
                self.assertEqual(encoded_sequence, truncated_sequence_left)

                tokenizer.truncation_side = "right"
                truncated_sequence_right = tokenizer.encode(sequence, add_special_tokens=False)
                truncated_sequence_right_length = len(truncated_sequence_right)
                self.assertEqual(sequence_length, truncated_sequence_right_length)
                self.assertEqual(encoded_sequence, truncated_sequence_right)

                tokenizer.truncation_side = "left"
                truncated_sequence_left = tokenizer.encode(sequence, truncation=False, add_special_tokens=False)
                truncated_sequence_left_length = len(truncated_sequence_left)
                self.assertEqual(sequence_length, truncated_sequence_left_length)
                self.assertEqual(encoded_sequence, truncated_sequence_left)

1579
    def test_padding_to_max_length(self):
1580
        """We keep this test for backward compatibility but it should be remove when `pad_to_max_length` is deprecated."""
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
1596
                # FIXME: the next line should be padding(max_length) to avoid warning
1597
1598
1599
1600
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, pad_to_max_length=True
                )
                padded_sequence_length = len(padded_sequence)
Nicolas Patry's avatar
Nicolas Patry committed
1601
1602
                self.assertEqual(sequence_length + padding_size, padded_sequence_length)
                self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
1603
1604
1605
1606
1607
1608
1609
1610

                # Check that nothing is done when a maximum length is not specified
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
                padded_sequence_right_length = len(padded_sequence_right)
Nicolas Patry's avatar
Nicolas Patry committed
1611
1612
                self.assertEqual(sequence_length, padded_sequence_right_length)
                self.assertEqual(encoded_sequence, padded_sequence_right)
1613

1614
1615
1616
    def test_padding_to_multiple_of(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
1617
1618
1619
1620
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                else:
1621
1622
1623
                    empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
                    normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
                    for key, value in empty_tokens.items():
1624
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1625
                    for key, value in normal_tokens.items():
1626
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1627
1628
1629

                    normal_tokens = tokenizer("This", pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
1630
                        self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1631
1632
1633
1634

                    # Should also work with truncation
                    normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
1635
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647

                    # truncation to something which is not a multiple of pad_to_multiple_of raises an error
                    self.assertRaises(
                        ValueError,
                        tokenizer.__call__,
                        "This",
                        padding=True,
                        truncation=True,
                        max_length=12,
                        pad_to_multiple_of=8,
                    )

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
    def test_padding_with_attention_mask(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                if "attention_mask" not in tokenizer.model_input_names:
                    self.skipTest("This model does not use attention mask.")

                features = [
                    {"input_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]},
                    {"input_ids": [1, 2, 3], "attention_mask": [1, 1, 0]},
                ]
                padded_features = tokenizer.pad(features)
                if tokenizer.padding_side == "right":
                    self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]])
                else:
                    self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]])

1667
    def test_encode_plus_with_padding(self):
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_size = 10
                padding_idx = tokenizer.pad_token_id
                token_type_padding_idx = tokenizer.pad_token_type_id

                encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
                input_ids = encoded_sequence["input_ids"]
                special_tokens_mask = encoded_sequence["special_tokens_mask"]
                sequence_length = len(input_ids)

                # Test 'longest' and 'no_padding' don't do anything
                tokenizer.padding_side = "right"

Lysandre's avatar
Lysandre committed
1688
1689
1690
1691
1692
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=True,
                    return_special_tokens_mask=True,
                )
1693
1694
1695
1696
1697
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1698
1699
1700
                self.assertEqual(sequence_length, not_padded_sequence_length)
                self.assertEqual(input_ids, not_padded_input_ids)
                self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask)
1701

Lysandre's avatar
Lysandre committed
1702
1703
1704
1705
1706
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=False,
                    return_special_tokens_mask=True,
                )
1707
1708
1709
1710
1711
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1712
1713
1714
                self.assertEqual(sequence_length, not_padded_sequence_length)
                self.assertEqual(input_ids, not_padded_input_ids)
                self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask)
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

                # Test right padding
                tokenizer.padding_side = "right"

                right_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                right_padded_input_ids = right_padded_sequence["input_ids"]

                right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
                right_padded_sequence_length = len(right_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1730
1731
1732
                self.assertEqual(sequence_length + padding_size, right_padded_sequence_length)
                self.assertEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids)
                self.assertEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask)
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745

                # Test left padding
                tokenizer.padding_side = "left"
                left_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                left_padded_input_ids = left_padded_sequence["input_ids"]
                left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
                left_padded_sequence_length = len(left_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1746
1747
1748
                self.assertEqual(sequence_length + padding_size, left_padded_sequence_length)
                self.assertEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids)
                self.assertEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask)
1749
1750
1751
1752
1753
1754

                if "token_type_ids" in tokenizer.model_input_names:
                    token_type_ids = encoded_sequence["token_type_ids"]
                    left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
                    right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

Nicolas Patry's avatar
Nicolas Patry committed
1755
1756
1757
1758
1759
1760
                    self.assertEqual(
                        token_type_ids + [token_type_padding_idx] * padding_size, right_padded_token_type_ids
                    )
                    self.assertEqual(
                        [token_type_padding_idx] * padding_size + token_type_ids, left_padded_token_type_ids
                    )
1761
1762
1763
1764
1765
1766

                if "attention_mask" in tokenizer.model_input_names:
                    attention_mask = encoded_sequence["attention_mask"]
                    right_padded_attention_mask = right_padded_sequence["attention_mask"]
                    left_padded_attention_mask = left_padded_sequence["attention_mask"]

Nicolas Patry's avatar
Nicolas Patry committed
1767
1768
                    self.assertEqual(attention_mask + [0] * padding_size, right_padded_attention_mask)
                    self.assertEqual([0] * padding_size + attention_mask, left_padded_attention_mask)
1769
1770
1771
1772
1773

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

1774
1775
1776
1777
1778
        tokenizers = self.get_tokenizers(random_argument=True)
        new_tokenizers = self.get_tokenizers(random_argument=False)

        for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers):
            with self.subTest(f"{tokenizer.__class__.__name__}"):
Nicolas Patry's avatar
Nicolas Patry committed
1779
1780
1781
                self.assertTrue(tokenizer.init_kwargs["random_argument"])
                self.assertTrue(tokenizer.init_kwargs["random_argument"])
                self.assertFalse(new_tokenizer.init_kwargs["random_argument"])
1782
1783

    def test_get_vocab(self):
1784
1785
1786
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1787
1788
1789
                vocab_dict = tokenizer.get_vocab()
                self.assertIsInstance(vocab_dict, dict)
                self.assertGreaterEqual(len(tokenizer), len(vocab_dict))
1790

1791
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
1792
                self.assertEqual(len(vocab), len(tokenizer))
1793

1794
                tokenizer.add_tokens(["asdfasdfasdfasdf"])
1795
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
1796
                self.assertEqual(len(vocab), len(tokenizer))
1797

1798
    def test_conversion_reversible(self):
1799
1800
1801
1802
1803
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()
                for word, ind in vocab.items():
1804
1805
                    if word == tokenizer.unk_token:
                        continue
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
                    self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
                    self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # Test not batched
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0])
                encoded_sequences_2 = tokenizer(sequences[0])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test not batched pairs
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1])
                encoded_sequences_2 = tokenizer(sequences[0], sequences[1])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched
                encoded_sequences_1 = tokenizer.batch_encode_plus(sequences)
                encoded_sequences_2 = tokenizer(sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched pairs
                encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences)))
                encoded_sequences_2 = tokenizer(sequences, sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)
1839
1840
1841

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences]
                encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False)
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

                maximum_length = len(
                    max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
                )

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences_padded = [
                    tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length")
                    for sequence in sequences
                ]

                encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True)
                self.assertListEqual(
                    encoded_sequences_padded,
                    self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
                )

                # check 'longest' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding="longest"
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
1882
1883
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
1884
1885
1886
1887
1888
1889
1890
1891
1892
                    )

                # check 'no_padding' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding=False
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
1893
1894
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
1895
                    )
1896

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
    @require_tokenizers
    def test_added_token_are_matched_longest_first(self):
        if not self.test_slow_tokenizer:
            self.skipTest("This test is only for slow tokenizers")
            return
        tokenizers = self.get_tokenizers(fast=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                try:
                    tokenizer.add_tokens([AddedToken("extra_id_1")])
                    tokenizer.add_tokens([AddedToken("extra_id_100")])
                except Exception:
                    # Canine cannot add tokens which are not codepoints
                    self.skipTest("Cannot add those Added tokens")

                # XXX: This used to split on `extra_id_1` first we're matching
                # longest first now.
                tokens = tokenizer.tokenize("This is some extra_id_100")
                self.assertIn("extra_id_100", tokens)

        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.add_tokens([AddedToken("extra_id_100")])
                tokenizer.add_tokens([AddedToken("extra_id_1")])

                tokens = tokenizer.tokenize("This is some extra_id_100")
                self.assertIn("extra_id_100", tokens)

1925
    @require_tokenizers
1926
1927
1928
    def test_added_token_serializable(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
1929
1930
1931
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                new_token = AddedToken("new_token", lstrip=True)
                tokenizer.add_special_tokens({"additional_special_tokens": [new_token]})
1932

1933
1934
1935
                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    tokenizer.save_pretrained(tmp_dir_name)
                    tokenizer.from_pretrained(tmp_dir_name)
1936

1937
1938
1939
1940
    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )
1965
1966

        # Left padding tests
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.padding_side = "left"
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

    def test_pretokenized_inputs(self):
        # Test when inputs are pretokenized

1996
        tokenizers = self.get_tokenizers(do_lower_case=False)  # , add_prefix_space=True)
1997
1998
1999
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

2000
2001
2002
                if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space:
                    continue

2003
2004
2005
2006
2007
2008
2009
                # Prepare a sequence from our tokenizer vocabulary
                sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20)
                # sequence = " " + sequence  # To be sure the byte-level tokenizers are feeling good
                token_sequence = sequence.split()
                # sequence_no_prefix_space = sequence.strip()

                # Test encode for pretokenized inputs
2010
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False)
2011
2012
2013
                output_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)

2014
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True)
2015
2016
2017
2018
                output_sequence = tokenizer.encode(sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs
2019
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False)
2020
2021
2022
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
2023
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True)
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs
                sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()]
                token_sequence_batch = [s.split() for s in sequence_batch]
                sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch]

                output = tokenizer.batch_encode_plus(
2034
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=False
2035
2036
2037
2038
2039
2040
2041
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
2042
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=True
2043
2044
2045
2046
2047
2048
2049
2050
2051
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test encode for pretokenized inputs pairs
                output = tokenizer.encode(
2052
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
2053
2054
2055
2056
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)
                output = tokenizer.encode(
2057
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
2058
2059
2060
2061
2062
2063
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs pairs
                output = tokenizer.encode_plus(
2064
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
2065
2066
2067
2068
2069
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.encode_plus(
2070
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs pairs
                sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [
                    (sequence.strip() + " " + sequence.strip(), sequence.strip())
                ]
                token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch]
                sequence_pair_batch_cleaned_up_spaces = [
                    tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch
                ]

                output = tokenizer.batch_encode_plus(
2086
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False
2087
2088
2089
2090
2091
2092
2093
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
2094
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True
2095
2096
2097
2098
2099
2100
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
2101

2102
2103
2104
    def test_prepare_for_model(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
2105
2106
2107
2108
2109
2110
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                string_sequence = "Testing the prepare_for_model method."
                ids = tokenizer.encode(string_sequence, add_special_tokens=False)
                prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True)

                input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True)
2111

2112
                self.assertEqual(input_dict, prepared_input_dict)
2113

2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
    def test_batch_encode_plus_overflowing_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            string_sequences = ["Testing the prepare_for_model method.", "Test"]

            if tokenizer.pad_token is None:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

            tokenizer.batch_encode_plus(
                string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
            )

2126
    @is_pt_tf_cross_test
2127
    def test_batch_encode_plus_tensors(self):
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # A Tensor cannot be build by sequences which are not the same size
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

                if tokenizer.pad_token_id is None:
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
2143
2144
2145
2146
2147
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding=True,
                        return_tensors="pt",
2148
2149
                    )
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
2150
2151
2152
2153
2154
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding="longest",
                        return_tensors="tf",
2155
2156
2157
2158
2159
                    )
                else:
                    pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt")
                    tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf")
                    encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True)
2160

2161
2162
2163
2164
                    for key in encoded_sequences.keys():
                        pytorch_value = pytorch_tensor[key].tolist()
                        tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                        encoded_value = encoded_sequences[key]
2165

2166
                        self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
2167
2168
2169
2170
2171
2172

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
2173
                    tokenizer.batch_encode_plus(sequences, padding="longest")
2174
                else:
2175
                    tokenizer.encode_plus(sequences, padding=True)
2176
2177
2178

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
2179

2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
    def check_subword_sampling(
        self,
        tokenizer: PreTrainedTokenizer,
        text: str = None,
    ) -> None:
        """
        Check if the tokenizer generates different results when subword regularization is enabled.

        Subword regularization augments training data with subword sampling.
        This has a random component.

        Args:
            tokenizer: The tokenizer to check.
            text: The text to use for the checks.
        """
        text = "This is a test for subword regularization." if text is None else text
        if self.test_sentencepiece_ignore_case:
            text = text.lower()

        tokens_list = []
        for _ in range(5):
            tokens_list.append(tokenizer.tokenize(text))

        # the list of different pairs of tokens_list
        combinations = itertools.combinations(tokens_list, 2)

        # check of sampling is done
        subword_sampling_found = False
        for combination in combinations:
            if combination[0] != combination[1]:
                subword_sampling_found = True
        self.assertTrue(subword_sampling_found)

        # check if converting back to original text works
        for tokens in tokens_list:
            if self.test_sentencepiece_ignore_case:
                self.assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower())
            else:
                self.assertEqual(text, tokenizer.convert_tokens_to_string(tokens))

2220
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
2221
    @slow
2222
    def test_torch_encode_plus_sent_to_model(self):
2223
        import torch
2224

2225
2226
2227
2228
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

2229
2230
2231
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
2232

2233
2234
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2235

2236
2237
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2238

2239
2240
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2241

2242
                model = model_class(config)
2243

2244
2245
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
Nicolas Patry's avatar
Nicolas Patry committed
2246
2247
                if is_using_common_embeddings:
                    self.assertGreaterEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
2248

2249
2250
2251
2252
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
2253
2254
2255
2256

                # Ensure that the BatchEncoding.to() method works.
                encoded_sequence.to(model.device)

2257
2258
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
                # This should not fail
2259

2260
2261
2262
                with torch.no_grad():  # saves some time
                    model(**encoded_sequence)
                    model(**batch_encoded_sequence)
2263

2264
2265
2266
2267
2268
2269
2270
        # if self.test_rust_tokenizer:
        #     fast_tokenizer = self.get_rust_tokenizer()
        #     encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
        #     batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        #     # This should not fail
        #     model(**encoded_sequence_fast)
        #     model(**batch_encoded_sequence_fast)
2271
2272

    @require_tf
Sylvain Gugger's avatar
Sylvain Gugger committed
2273
    @slow
2274
2275
2276
2277
2278
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

2279
2280
2281
2282
2283
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2284

2285
2286
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2287

2288
2289
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2290

2291
                model = model_class(config)
2292

2293
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
Nicolas Patry's avatar
Nicolas Patry committed
2294
                self.assertGreaterEqual(model.config.vocab_size, len(tokenizer))
2295

2296
2297
2298
2299
2300
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
2301

2302
2303
2304
                # This should not fail
                model(encoded_sequence)
                model(batch_encoded_sequence)
2305
2306
2307

    # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
2308
    @slow
2309
2310
2311
2312
2313
    def test_np_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

2314
2315
2316
2317
2318
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2319

2320
2321
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2322

2323
2324
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2325

2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

                # TODO: add forward through JAX/Flax when PR is merged
                # This is currently here to make flake8 happy !
                if encoded_sequence is None:
                    raise ValueError("Cannot convert list to numpy tensor on  encode_plus()")

                if batch_encoded_sequence is None:
                    raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus()")

                if self.test_rust_tokenizer:
                    fast_tokenizer = self.get_rust_tokenizer()
                    encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
                    batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus(
                        [sequence, sequence], return_tensors="np"
                    )
2346

2347
2348
2349
2350
                    # TODO: add forward through JAX/Flax when PR is merged
                    # This is currently here to make flake8 happy !
                    if encoded_sequence_fast is None:
                        raise ValueError("Cannot convert list to numpy tensor on  encode_plus() (fast)")
2351

2352
2353
                    if batch_encoded_sequence_fast is None:
                        raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus() (fast)")
2354
2355
2356

    @require_torch
    def test_prepare_seq2seq_batch(self):
2357
2358
2359
        if not self.test_seq2seq:
            return

2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Longer text that will definitely require truncation.
                src_text = [
                    " UN Chief Says There Is No Military Solution in Syria",
                    " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
                ]
                tgt_text = [
                    "Şeful ONU declară că nu există o soluţie militară în Siria",
                    "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei "
                    'pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu '
                    "vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
                ]
                try:
                    batch = tokenizer.prepare_seq2seq_batch(
                        src_texts=src_text,
                        tgt_texts=tgt_text,
                        max_length=3,
                        max_target_length=10,
                        return_tensors="pt",
                        src_lang="en_XX",  # this should be ignored (for all but mbart) but not cause an error
                    )
                except NotImplementedError:
                    return
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 10)
                # max_target_length will default to max_length if not specified
                batch = tokenizer.prepare_seq2seq_batch(
                    src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt"
                )
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 3)
2393

2394
2395
2396
2397
2398
2399
                batch_encoder_only = tokenizer.prepare_seq2seq_batch(
                    src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
                )
                self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
                self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
                self.assertNotIn("decoder_input_ids", batch_encoder_only)
2400
2401
2402

    def test_is_fast(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2403
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2404
2405
2406
2407
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # Check is_fast is set correctly
                self.assertTrue(tokenizer_r.is_fast)

2408
2409
2410
2411
                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                    self.assertFalse(tokenizer_p.is_fast)

2412
2413
    def test_fast_only_inputs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2414
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure None raise an error
                self.assertRaises(TypeError, tokenizer_r.tokenize, None)
                self.assertRaises(TypeError, tokenizer_r.encode, None)
                self.assertRaises(TypeError, tokenizer_r.encode_plus, None)
                self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None)

    def test_alignement_methods(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2425
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                batch_size = 3

                encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

                batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # words, tokens
                self.assertEqual(len(encoding.words(0)), num_tokens)
                self.assertEqual(max(encoding.words(0)), last_word_index)
                self.assertEqual(min(encoding.words(0)), 0)
                self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
                self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
                self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
                self.assertEqual(len(encoding.tokens(0)), num_tokens)

                # Assert token_to_word
                self.assertEqual(encoding.token_to_word(0), 0)
                self.assertEqual(encoding.token_to_word(0, 0), 0)
                self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
                self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

                # Assert word_to_tokens
                self.assertEqual(encoding.word_to_tokens(0).start, 0)
                self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
                self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
                self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1
                )

                # Assert token_to_chars
                self.assertEqual(encoding.token_to_chars(0).start, 0)
                self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
                self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1
                )

                # Assert char_to_token
                self.assertEqual(encoding.char_to_token(0), 0)
                self.assertEqual(encoding.char_to_token(0, 0), 0)
                self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
                self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

                # Assert char_to_word
                self.assertEqual(encoding.char_to_word(0), 0)
                self.assertEqual(encoding.char_to_word(0, 0), 0)
                self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
                self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

                # Assert word_to_chars
                self.assertEqual(encoding.word_to_chars(0).start, 0)
                self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
                self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1
                )

2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
                # Assert token_to_sequence
                self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0)
                self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0)

                # Pair of input sequences

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                pair_words = ["Amazing", "example", "full", "of", "inspiration"]
                pair_text = " ".join(pair_words)
                batch_size = 3
                index_word_in_first_seq = words.index("inspiration")
                index_word_in_pair_seq = pair_words.index("inspiration")
                index_char_in_first_seq = text.find("inspiration")
                index_char_in_pair_seq = pair_text.find("inspiration")

                pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False)

                pair_batch_encoding = tokenizer_r.batch_encode_plus(
                    [(text, pair_text)] * batch_size, add_special_tokens=False
                )
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # Assert word_to_tokens
                self.assertNotEqual(
                    pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start,
                    pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    pair_encoding["input_ids"][
                        pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start
                    ],
                    pair_encoding["input_ids"][
                        pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start
                    ],
                )
                self.assertNotEqual(
                    pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start,
                    pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start
                    ],
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start
                    ],
                )

                # Assert char_to_token
                self.assertNotEqual(
                    pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0),
                    pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)],
                    pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)],
                )
                self.assertNotEqual(
                    pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0),
                    pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0)
                    ],
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1)
                    ],
                )

                # Assert char_to_word
                self.assertNotEqual(
                    pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0),
                    pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)],
                    pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)],
                )
                self.assertNotEqual(
                    pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0),
                    pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)],
                    pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)],
                )

                # Assert word_to_chars
                self.assertNotEqual(
                    pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start,
                    pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start],
                    pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start],
                )
                self.assertNotEqual(
                    pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start,
                    pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start],
                    pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start],
                )

                # Assert token_to_sequence
                pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True)

                pair_sequence_ids = [
                    pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"]))
                ]
                self.assertIn(0, pair_sequence_ids)
                self.assertIn(1, pair_sequence_ids)
                if tokenizer_r.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, pair_sequence_ids)

                pair_batch_encoding = tokenizer_r.batch_encode_plus(
                    [(text, pair_text)] * batch_size, add_special_tokens=True
                )
                pair_batch_sequence_ids = [
                    pair_batch_encoding.token_to_sequence(1, i)
                    for i in range(len(pair_batch_encoding["input_ids"][0]))
                ]
                self.assertIn(0, pair_batch_sequence_ids)
                self.assertIn(1, pair_batch_sequence_ids)
                if tokenizer_r.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, pair_batch_sequence_ids)

2649
    def test_tokenization_python_rust_equals(self):
2650
2651
2652
2653
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2654
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2655
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure basic input match
                input_p = tokenizer_p.encode_plus(self._data)
                input_r = tokenizer_r.encode_plus(self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
                input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])

                # Ensure truncation match
                input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
                input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                # Ensure truncation with stride match
                input_p = tokenizer_p.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )
                input_r = tokenizer_r.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key][0])

    def test_num_special_tokens_to_add_equal(self):
2691
2692
2693
2694
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2695
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2696
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the same number of added_tokens for both pair and non-pair inputs.
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False)
                )
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True)
                )

    def test_max_length_equal(self):
2709
2710
2711
2712
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2713
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2714
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2715
2716
2717
2718
2719
2720
2721
2722
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the correct max_length for both pair and non-pair inputs.
                self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
                self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def test_special_tokens_map_equal(self):
2723
2724
2725
2726
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2727
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2728
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Assert the set of special tokens match.
                self.assertSequenceEqual(
                    tokenizer_p.special_tokens_map.items(),
                    tokenizer_r.special_tokens_map.items(),
                )

    def test_add_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2740
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                vocab_size = len(tokenizer_r)
                self.assertEqual(tokenizer_r.add_tokens(""), 0)
                self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
                self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
                self.assertEqual(len(tokenizer_r), vocab_size + 3)

                self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
                self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
                self.assertRaises(
                    AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
                )
                self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
                self.assertEqual(
                    tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
                )
2758
2759
2760
2761
                self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"])
                self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list)
                self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2)

2762
2763
2764
2765
                self.assertEqual(len(tokenizer_r), vocab_size + 8)

    def test_offsets_mapping(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2766
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                text = "Wonderful no inspiration example with subtoken"
                pair = "Along with an awesome pair"

                # No pair
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(False)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

                # Pairs
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(True)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def test_batch_encode_dynamic_overflowing(self):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

2812
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
2813

2814
2815
2816
2817
2818
2819
                if is_torch_available():
                    returned_tensor = "pt"
                elif is_tf_available():
                    returned_tensor = "tf"
                else:
                    returned_tensor = "jax"
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864

                if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
                    return

                tokens = tokenizer.encode_plus(
                    "HuggingFace is solving NLP one commit at a time",
                    max_length=6,
                    padding=True,
                    truncation=True,
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)

                # Mono sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

                # Multi sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

    def test_compare_pretokenized_inputs(self):
2865
2866
2867
2868
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2869
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2870
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space:
                    continue  # Too hard to test for now

                # Input string
                pretokenized_input_simple = "This is a sample input".split()
                pretokenized_input_pair = "This is a sample pair".split()

                # Test encode for pretokenized inputs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                self.assertEqual(output_p, output_r)

                kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                batch_kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
                output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test encode for pretokenized inputs pairs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                self.assertEqual(output_p, output_r)

                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
                    pretokenized_input_simple + pretokenized_input_pair,
                    pretokenized_input_pair,
                ]
                output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

    def test_create_token_type_ids(self):
2947
2948
2949
2950
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2951
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2952
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                input_simple = [1, 2, 3]
                input_pair = [1, 2, 3]

                # Generate output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_build_inputs_with_special_tokens(self):
2969
2970
2971
2972
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2973
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2974
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # # Input string
                # input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False)
                # input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False)

                # # Generate output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                # self.assertEqual(output_p, output_r)

                # # Generate pair output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                # self.assertEqual(output_p, output_r)

                # Input tokens id
                input_simple = tokenizer_p.encode("This is a sample input", add_special_tokens=False)
                input_pair = tokenizer_p.encode("This is a sample pair", add_special_tokens=False)

                # Generate output
                output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_padding(self, max_length=50):
3006
3007
3008
3009
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3010
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3011
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3012
3013
3014
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

3015
3016
                self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
                pad_token_id = tokenizer_p.pad_token_id
3017
3018
3019
3020

                # Encode - Simple input
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
3021
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3022
3023
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
3024
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3025
3026
3027

                input_r = tokenizer_r.encode("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode("This is a simple input", padding=True)
3028
                self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
3029
3030
3031
3032
3033
3034
3035
3036

                # Encode - Pair input
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
3037
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3038
3039
3040
3041
3042
3043
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
3044
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3045
3046
                input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
                input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
3047
                self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
3048
3049
3050
3051
3052
3053
3054
3055

                # Encode_plus - Simple input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
3056
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3057
3058
3059
3060
3061
3062
3063
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
3064
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3065
3066
3067
3068
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
3069
3070
3071
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081

                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Encode_plus - Pair input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
3082
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3083
3084
3085
3086
3087
3088
3089
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
3090
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3091
3092
3093
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
3094
3095
3096
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Batch_encode_plus - Simple input
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
3110
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
3122
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="longest",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding=True,
                )
3134
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3135
3136
3137
3138
3139
3140
3141

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding="longest"
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding=True
                )
3142
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162

                # Batch_encode_plus - Pair input
                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
3163
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178

                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding="longest",
                )
3179
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3180
3181
3182
3183
3184

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r)

3185
3186
                input_p = tokenizer_p.encode_plus("This is a input 1")
                input_p = tokenizer_p.pad(input_p)
3187

3188
3189
3190
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
3191
3192
3193
3194
3195

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

3196
3197
                input_p = tokenizer_p.encode_plus("This is a input 1")
                input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length")
3198

3199
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3200
3201
3202
3203
3204
3205
3206

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r)

3207
                input_p = tokenizer_p.batch_encode_plus(
3208
3209
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
3210
                input_p = tokenizer_p.pad(input_p)
3211

3212
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3213
3214
3215
3216
3217
3218
3219

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

3220
                input_p = tokenizer_p.batch_encode_plus(
3221
3222
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
3223
3224
                input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length")
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3225

3226
3227
3228
                # Test padding nested empty lists (in some use-cases, there is no any token id in the `input_ids` list).
                input_r = tokenizer_r.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length")
                input_p = tokenizer_p.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length")
3229
3230
3231
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)

    def test_padding_different_model_input_name(self):
3232
3233
3234
3235
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3236
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3237
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
                pad_token_id = tokenizer_p.pad_token_id

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )

                # rename encoded batch to "inputs"
                input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]]
                del input_r[tokenizer_r.model_input_names[0]]

                input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]]
                del input_p[tokenizer_p.model_input_names[0]]

                # Renaming `input_ids` to `inputs`
                tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:]
                tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:]

                input_r = tokenizer_r.pad(input_r, padding="longest")
                input_p = tokenizer_r.pad(input_p, padding="longest")

                max_length = len(input_p["inputs"][0])
                self.assert_batch_padded_input_match(
                    input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs"
                )
3268
3269

    def test_save_pretrained(self):
3270
3271
3272
3273
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3274
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3275
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3276
3277
3278
3279
3280
3281
3282
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
Sylvain Gugger's avatar
Sylvain Gugger committed
3283
3284
3285
3286

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

                shutil.rmtree(tmpdirname2)

Sylvain Gugger's avatar
Sylvain Gugger committed
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

3339
    def test_embeded_special_tokens(self):
3340
3341
3342
3343
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3344
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3345
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )
                tokens_p = tokenizer_p.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )

                for key in tokens_p.keys():
                    self.assertEqual(tokens_r[key], tokens_p[key])

                if "token_type_ids" in tokens_r:
                    self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
                self.assertSequenceEqual(tokens_r, tokens_p)

    def test_compare_add_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3370
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
                # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

                for text in ["", " "]:
                    # tokenize()
                    no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode()
                    no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode_plus()
                    no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        self.assertEqual(
                            len(no_special_tokens[key]),
                            len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
                        )

                    # # batch_encode_plus
                    no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
                    with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                            self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)

    def test_compare_prepare_for_model(self):
3408
3409
3410
3411
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3412
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3413
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                string_sequence = "Asserting that both tokenizers are equal"
                python_output = tokenizer_p.prepare_for_model(
                    tokenizer_p.encode(string_sequence, add_special_tokens=False)
                )
                rust_output = tokenizer_r.prepare_for_model(
                    tokenizer_r.encode(string_sequence, add_special_tokens=False)
                )
                for key in python_output:
                    self.assertEqual(python_output[key], rust_output[key])
Sylvain Gugger's avatar
Sylvain Gugger committed
3425

Lysandre Debut's avatar
Lysandre Debut committed
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):

                added_tokens = [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                r_output = tokenizer_r.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertTrue(special_token_id in r_output)
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456

                if self.test_slow_tokenizer:
                    tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
                    )
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs
                    )

                    p_output = tokenizer_p.encode("Hey this is a <special> token")

                    cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                    self.assertEqual(p_output, r_output)
                    self.assertEqual(cr_output, r_output)
                    self.assertTrue(special_token_id in p_output)
                    self.assertTrue(special_token_id in cr_output)
Lysandre Debut's avatar
Lysandre Debut committed
3457

3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
    def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        if self.test_rust_tokenizer:
            tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file:
                    special_tokens_map = json.load(json_file)

                with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file:
                    tokenizer_config = json.load(json_file)

                special_tokens_map["additional_special_tokens"] = ["an_additional_special_token"]
                tokenizer_config["additional_special_tokens"] = ["an_additional_special_token"]

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
                    json.dump(special_tokens_map, outfile)
                with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
                    json.dump(tokenizer_config, outfile)

                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
                tokenizer_without_change_in_init = tokenizer_class.from_pretrained(
                    tmp_dir,
                )
                self.assertIn(
                    "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
                )
                self.assertIn("an_additional_special_token", tokenizer_without_change_in_init.get_vocab())
                self.assertEqual(
                    ["an_additional_special_token"],
                    tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
                    ),
                )

                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                new_added_tokens = [AddedToken("a_new_additional_special_token", lstrip=True)]
                tokenizer = tokenizer_class.from_pretrained(
                    tmp_dir,
                    additional_special_tokens=new_added_tokens,
                )

                self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
                self.assertEqual(
                    ["a_new_additional_special_token"],
                    tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
                    ),
                )

3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
    def test_training_new_tokenizer(self):
        # This feature only exists for fast tokenizers
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_rust_tokenizer()
        new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)

        # Test we can use the new tokenizer with something not seen during training
        inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."])
        self.assertEqual(len(inputs["input_ids"]), 2)
        decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
        expected_result = "This is the first sentence"

3530
3531
        if tokenizer.backend_tokenizer.normalizer is not None:
            expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
        self.assertEqual(expected_result, decoded_input)

        # We check that the parameters of the tokenizer remained the same
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))

        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
        self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)

        # Assert the set of special tokens match as we didn't ask to change them
        self.assertSequenceEqual(
            tokenizer.all_special_tokens_extended,
            new_tokenizer.all_special_tokens_extended,
        )

        self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)

    def test_training_new_tokenizer_with_special_tokens_change(self):
        # This feature only exists for fast tokenizers
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_rust_tokenizer()
        # Test with a special tokens map
        class_signature = inspect.signature(tokenizer.__class__)
        if "cls_token" in class_signature.parameters:
            new_tokenizer = tokenizer.train_new_from_iterator(
                SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"}
            )
            cls_id = new_tokenizer.get_vocab()["<cls>"]
            self.assertEqual(new_tokenizer.cls_token, "<cls>")
            self.assertEqual(new_tokenizer.cls_token_id, cls_id)

        # Create a new mapping from the special tokens defined in the original tokenizer
        special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
        special_tokens_list.remove("additional_special_tokens")
        special_tokens_map = {}
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(tokenizer, f"_{token}") is not None:
                special_token = getattr(tokenizer, token)
                special_tokens_map[special_token] = f"{special_token}a"

        # Train new tokenizer
        new_tokenizer = tokenizer.train_new_from_iterator(
            SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map
        )

        # Check the changes
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(tokenizer, f"_{token}") is None:
                continue
            special_token = getattr(tokenizer, token)
            if special_token in special_tokens_map:
                new_special_token = getattr(new_tokenizer, token)
                self.assertEqual(special_tokens_map[special_token], new_special_token)

                new_id = new_tokenizer.get_vocab()[new_special_token]
                self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id)

        # Check if the AddedToken / string format has been kept
        for special_token in tokenizer.all_special_tokens_extended:
            if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map:
                # The special token must appear identically in the list of the new tokenizer.
                self.assertTrue(
                    special_token in new_tokenizer.all_special_tokens_extended,
                    f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
                )
            elif isinstance(special_token, AddedToken):
                # The special token must appear in the list of the new tokenizer as an object of type AddedToken with
                # the same parameters as the old AddedToken except the content that the user has requested to change.
                special_token_str = special_token.content
                new_special_token_str = special_tokens_map[special_token_str]

                find = False
                for candidate in new_tokenizer.all_special_tokens_extended:
                    if (
                        isinstance(candidate, AddedToken)
                        and candidate.content == new_special_token_str
                        and candidate.lstrip == special_token.lstrip
                        and candidate.rstrip == special_token.rstrip
                        and candidate.normalized == special_token.normalized
                        and candidate.single_word == special_token.single_word
                    ):
                        find = True
                        break
                self.assertTrue(
                    find,
                    (
                        f"'{new_special_token_str}' doesn't appear in the list "
                        f"'{new_tokenizer.all_special_tokens_extended}' as an AddedToken with the same parameters as "
                        f"'{special_token}' in the list {tokenizer.all_special_tokens_extended}"
                    ),
                )
            elif special_token not in special_tokens_map:
                # The special token must appear identically in the list of the new tokenizer.
                self.assertTrue(
                    special_token in new_tokenizer.all_special_tokens_extended,
                    f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
                )

            else:
                # The special token must appear in the list of the new tokenizer as an object of type string.
                self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended)

        # Test we can use the new tokenizer with something not seen during training
        inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."])
        self.assertEqual(len(inputs["input_ids"]), 2)
        decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
        expected_result = "This is the first sentence"

3646
3647
        if tokenizer.backend_tokenizer.normalizer is not None:
            expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
3648
3649
        self.assertEqual(expected_result, decoded_input)

3650
3651
3652
3653
3654
3655
3656
3657
3658
    def test_tokenizer_mismatch_warning(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with self.assertLogs("transformers", level="WARNING") as cm:
                    try:
                        if self.tokenizer_class == BertTokenizer:
                            AlbertTokenizer.from_pretrained(pretrained_name)
                        else:
                            BertTokenizer.from_pretrained(pretrained_name)
3659
3660
3661
3662
                    except EnvironmentError as e:
                        # Some tokenizer will raised an error before reaching the logged warning because there are no
                        # corresponding files to load
                        error_message = str(e)
3663
3664
3665
3666
3667
                    except (TypeError, AttributeError):
                        # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
                        # here we just check that the warning has been logged before the error is raised
                        pass
                    finally:
3668
3669
3670
3671
3672
                        logged_msg_target = (
                            "The tokenizer class you load from this checkpoint is not the same type as the class "
                            "this function is called from."
                        )
                        raised_error_msg_target = "Can't load tokenizer for"
3673
                        self.assertTrue(
3674
3675
3676
                            cm.records[0].message.startswith(logged_msg_target)
                            if len(cm.records) > 0
                            else False or raised_error_msg_target in error_message
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
                        )
                    try:
                        if self.rust_tokenizer_class == BertTokenizerFast:
                            AlbertTokenizerFast.from_pretrained(pretrained_name)
                        else:
                            BertTokenizerFast.from_pretrained(pretrained_name)
                    except (TypeError, AttributeError):
                        # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
                        # here we just check that the warning has been logged before the error is raised
                        pass
                    finally:
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
                            )
                        )

3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
    @require_torch
    def test_saving_tokenizer_trainer(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    # Save the fast tokenizer files in a temporary directory
                    tokenizer_old = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs, use_fast=True)
                    tokenizer_old.save_pretrained(tmp_dir, legacy_format=False)  # save only fast version

                    # Initialize toy model for the trainer
                    model = nn.Module()

                    # Load tokenizer from a folder without legacy files
                    tokenizer = self.rust_tokenizer_class.from_pretrained(tmp_dir)
                    training_args = TrainingArguments(output_dir=tmp_dir, do_train=True, no_cuda=True)
                    trainer = Trainer(model=model, args=training_args, tokenizer=tokenizer)

                    # Should not raise an error
                    trainer.save_model(os.path.join(tmp_dir, "checkpoint"))
                    self.assertIn("tokenizer.json", os.listdir(os.path.join(tmp_dir, "checkpoint")))

3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
    def test_save_slow_from_fast_and_reload_fast(self):
        if not self.test_slow_tokenizer or not self.test_rust_tokenizer:
            # we need both slow and fast versions
            return

        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with tempfile.TemporaryDirectory() as tmp_dir_1:
                    # Here we check that even if we have initialized a fast tokenizer with a tokenizer_file we can
                    # still save only the slow version and use these saved files to rebuild a tokenizer
                    tokenizer_fast_old_1 = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, **kwargs, use_fast=True
                    )
                    tokenizer_file = os.path.join(tmp_dir_1, "tokenizer.json")
                    tokenizer_fast_old_1.backend_tokenizer.save(tokenizer_file)

                    tokenizer_fast_old_2 = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, **kwargs, use_fast=True, tokenizer_file=tokenizer_file
                    )

                    tokenizer_fast_old_2.save_pretrained(tmp_dir_1, legacy_format=True)  # save only slow version

                    tokenizer_slow = self.tokenizer_class.from_pretrained(tmp_dir_1)
                with tempfile.TemporaryDirectory() as tmp_dir_2:
                    tokenizer_slow.save_pretrained(tmp_dir_2)

                    # Should not raise an error
                    self.rust_tokenizer_class.from_pretrained(tmp_dir_2)

Sylvain Gugger's avatar
Sylvain Gugger committed
3744
3745

@is_staging_test
3746
class TokenizerPushToHubTester(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
3747
3748
3749
3750
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

    @classmethod
    def setUpClass(cls):
3751
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
3752
3753
3754
3755

    @classmethod
    def tearDownClass(cls):
        try:
3756
            delete_repo(token=cls._token, name="test-tokenizer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3757
3758
3759
3760
        except HTTPError:
            pass

        try:
3761
            delete_repo(token=cls._token, name="test-tokenizer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3762
3763
3764
        except HTTPError:
            pass

3765
3766
3767
3768
3769
        try:
            delete_repo(token=cls._token, name="test-dynamic-tokenizer")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
3770
3771
3772
3773
3774
3775
    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = BertTokenizer(vocab_file)
3776
            tokenizer.save_pretrained(
3777
                os.path.join(tmp_dir, "test-tokenizer"), push_to_hub=True, use_auth_token=self._token
3778
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3779

3780
            new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3781
3782
3783
3784
3785
3786
3787
3788
3789
            self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab)

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = BertTokenizer(vocab_file)
            tokenizer.save_pretrained(
3790
                os.path.join(tmp_dir, "test-tokenizer-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
3791
3792
3793
3794
3795
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

3796
            new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3797
            self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab)
3798

3799
    @require_tokenizers
3800
    def test_push_to_hub_dynamic_tokenizer(self):
3801
        CustomTokenizer.register_for_auto_class()
3802
3803
3804
3805
        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
3806
            tokenizer = CustomTokenizer(vocab_file)
3807
3808
3809
3810
3811

        # No fast custom tokenizer
        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-tokenizer", use_auth_token=self._token)
            tokenizer.save_pretrained(tmp_dir)
3812
3813
3814

            with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
                tokenizer_config = json.load(f)
3815
3816
3817
            self.assertDictEqual(
                tokenizer_config["auto_map"], {"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None]}
            )
3818
3819
3820
3821

            repo.push_to_hub()

        tokenizer = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=True)
3822
3823
        # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
        self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer")
3824
3825

        # Fast and slow custom tokenizer
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
        CustomTokenizerFast.register_for_auto_class()
        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))

            bert_tokenizer = BertTokenizerFast.from_pretrained(tmp_dir)
            bert_tokenizer.save_pretrained(tmp_dir)
            tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir)

3836
3837
3838
        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-tokenizer", use_auth_token=self._token)
            tokenizer.save_pretrained(tmp_dir)
3839
3840
3841

            with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
                tokenizer_config = json.load(f)
3842
            self.assertDictEqual(
3843
                tokenizer_config["auto_map"],
3844
3845
3846
3847
3848
3849
                {
                    "AutoTokenizer": [
                        "custom_tokenization.CustomTokenizer",
                        "custom_tokenization_fast.CustomTokenizerFast",
                    ]
                },
3850
            )
3851
3852
3853
3854
3855

            repo.push_to_hub()

        tokenizer = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer", trust_remote_code=True)
        # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
3856
        self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast")
3857
3858
3859
3860
        tokenizer = AutoTokenizer.from_pretrained(
            f"{USER}/test-dynamic-tokenizer", use_fast=False, trust_remote_code=True
        )
        # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
3861
        self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer")
3862

3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879

class TrieTest(unittest.TestCase):
    def test_trie(self):
        trie = Trie()
        trie.add("Hello 友達")
        self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}})
        trie.add("Hello")
        trie.data
        self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}})

    def test_trie_split(self):
        trie = Trie()
        self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS] This is a extra_id_100"])
        trie.add("[CLS]")
        trie.add("extra_id_1")
        trie.add("extra_id_100")
        self.assertEqual(trie.split("[CLS] This is a extra_id_100"), ["[CLS]", " This is a ", "extra_id_100"])
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891

    def test_trie_single(self):
        trie = Trie()
        trie.add("A")
        self.assertEqual(trie.split("ABC"), ["A", "BC"])
        self.assertEqual(trie.split("BCA"), ["BC", "A"])

    def test_trie_final(self):
        trie = Trie()
        trie.add("TOKEN]")
        trie.add("[SPECIAL_TOKEN]")
        self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"])
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906

    def test_trie_subtokens(self):
        trie = Trie()
        trie.add("A")
        trie.add("P")
        trie.add("[SPECIAL_TOKEN]")
        self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]"), ["This is something ", "[SPECIAL_TOKEN]"])

    def test_trie_suffix_tokens(self):
        trie = Trie()
        trie.add("AB")
        trie.add("B")
        trie.add("C")
        self.assertEqual(trie.split("ABC"), ["AB", "C"])

3907
3908
3909
3910
3911
3912
3913
    def test_trie_skip(self):
        trie = Trie()
        trie.add("ABC")
        trie.add("B")
        trie.add("CD")
        self.assertEqual(trie.split("ABCD"), ["ABC", "D"])

3914
3915
3916
3917
3918
3919
    def test_cut_text_hardening(self):
        # Even if the offsets are wrong, we necessarily output correct string
        # parts.
        trie = Trie()
        parts = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3])
        self.assertEqual(parts, ["AB", "C"])