seq2seq_trainer.py 10.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import Any, Dict, List, Optional, Tuple, Union
Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
20

import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler

21
from transformers import PreTrainedModel, Trainer, logging
Sylvain Gugger's avatar
Sylvain Gugger committed
22
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
23
24
25
26
27
28
29
30
31
32
from transformers.optimization import (
    Adafactor,
    AdamW,
    get_constant_schedule,
    get_constant_schedule_with_warmup,
    get_cosine_schedule_with_warmup,
    get_cosine_with_hard_restarts_schedule_with_warmup,
    get_linear_schedule_with_warmup,
    get_polynomial_decay_schedule_with_warmup,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
33
from transformers.trainer_pt_utils import get_tpu_sampler
34
from transformers.training_args import ParallelMode
35
from transformers.utils import is_torch_xla_available
Suraj Patil's avatar
Suraj Patil committed
36
37


38
logger = logging.get_logger(__name__)
Suraj Patil's avatar
Suraj Patil committed
39

40
41
42
43
44
45
46
47
48
arg_to_scheduler = {
    "linear": get_linear_schedule_with_warmup,
    "cosine": get_cosine_schedule_with_warmup,
    "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
    "polynomial": get_polynomial_decay_schedule_with_warmup,
    "constant": get_constant_schedule,
    "constant_w_warmup": get_constant_schedule_with_warmup,
}

Suraj Patil's avatar
Suraj Patil committed
49
50

class Seq2SeqTrainer(Trainer):
51
    def __init__(self, config=None, data_args=None, *args, **kwargs):
52
        super().__init__(*args, **kwargs)
53
54

        if config is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57
58
            assert isinstance(self.model, PreTrainedModel), (
                "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
                f" {self.model.__class__}"
            )
59
            self.config = self.model.config
60
61
62
        else:
            self.config = config

63
        self.data_args = data_args
64
        self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size
65

66
        if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
Sylvain Gugger's avatar
Sylvain Gugger committed
67
            assert self.config.pad_token_id is not None, (
68
                "Make sure that `config.pad_token_id` is correctly defined when ignoring `pad_token` for loss"
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
                " calculation or doing label smoothing."
            )
71

72
        if self.config.pad_token_id is None and self.config.eos_token_id is not None:
73
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
74
75
                f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for"
                " padding.."
76
77
            )

78
79
80
81
        if self.args.label_smoothing == 0:
            self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
        else:
            # dynamically import label_smoothed_nll_loss
82
            from utils import label_smoothed_nll_loss
83
84
85

            self.loss_fn = label_smoothed_nll_loss

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def create_optimizer_and_scheduler(self, num_training_steps: int):
        """
        Setup the optimizer and the learning rate scheduler.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
        """
        if self.optimizer is None:
            no_decay = ["bias", "LayerNorm.weight"]
            optimizer_grouped_parameters = [
                {
                    "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
                    "weight_decay": 0.0,
                },
            ]
105
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
106
            if self.args.adafactor:
107
108
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
109
            else:
110
111
112
113
114
115
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
116
            self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
117
118

        if self.lr_scheduler is None:
119
120
            self.lr_scheduler = self._get_lr_scheduler(num_training_steps)
        else:  # ignoring --lr_scheduler
121
            logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.")
122
123
124
125
126
127
128
129
130

    def _get_lr_scheduler(self, num_training_steps):
        schedule_func = arg_to_scheduler[self.args.lr_scheduler]
        if self.args.lr_scheduler == "constant":
            scheduler = schedule_func(self.optimizer)
        elif self.args.lr_scheduler == "constant_w_warmup":
            scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps)
        else:
            scheduler = schedule_func(
131
132
                self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
            )
133
        return scheduler
134

135
    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
Suraj Patil's avatar
Suraj Patil committed
136
137
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
            return None
138
        elif is_torch_xla_available():
Suraj Patil's avatar
Suraj Patil committed
139
140
141
142
            return get_tpu_sampler(self.train_dataset)
        else:
            if self.args.sortish_sampler:
                self.train_dataset.make_sortish_sampler(
143
                    self.args.per_device_train_batch_size,
144
                    distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
145
146
147
148
149
150
151
152
                )

            return (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

153
    def _compute_loss(self, model, inputs, labels):
Suraj Patil's avatar
Suraj Patil committed
154
        if self.args.label_smoothing == 0:
155
156
157
            if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
                # force training to ignore pad token
                logits = model(**inputs, use_cache=False)[0]
158
                loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1))
159
160
            else:
                # compute usual loss via models
161
                loss, logits = model(**inputs, labels=labels, use_cache=False)[:2]
Suraj Patil's avatar
Suraj Patil committed
162
        else:
163
164
            # compute label smoothed loss
            logits = model(**inputs, use_cache=False)[0]
Suraj Patil's avatar
Suraj Patil committed
165
            lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
166
            loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id)
167
168
169
        return loss, logits

    def compute_loss(self, model, inputs):
170
171
        labels = inputs.pop("labels")
        loss, _ = self._compute_loss(model, inputs, labels)
Suraj Patil's avatar
Suraj Patil committed
172
173
174
        return loss

    def prediction_step(
175
176
177
178
179
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
Suraj Patil's avatar
Suraj Patil committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.

        Return:
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
            A tuple with the loss, logits and labels (each being optional).
        """
        inputs = self._prepare_inputs(inputs)

203
204
205
206
207
208
209
        gen_kwargs = {
            "max_length": self.data_args.val_max_target_length
            if self.data_args is not None
            else self.config.max_length,
            "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
        }

210
        if self.args.predict_with_generate and not self.args.prediction_loss_only:
211
            generated_tokens = self.model.generate(
212
213
214
215
216
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                **gen_kwargs,
            )
            # in case the batch is shorter than max length, the output should be padded
217
            if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
218
219
                generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])

220
        labels = inputs.pop("labels")
Suraj Patil's avatar
Suraj Patil committed
221
        with torch.no_grad():
222
223
            # compute loss on predict data
            loss, logits = self._compute_loss(model, inputs, labels)
224
225
226
227
228
229
230

        loss = loss.mean().detach()
        if self.args.prediction_loss_only:
            return (loss, None, None)

        logits = generated_tokens if self.args.predict_with_generate else logits

231
232
        if labels.shape[-1] < gen_kwargs["max_length"]:
            labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
233
234

        return (loss, logits, labels)
Suraj Patil's avatar
Suraj Patil committed
235

236
    def _pad_tensors_to_max_len(self, tensor, max_length):
237
238
239
240
241
        # If PAD token is not defined at least EOS token has to be defined
        pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id

        if pad_token_id is None:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
                "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be"
                f" padded to `max_length`={max_length}"
244
245
246
            )

        padded_tensor = pad_token_id * torch.ones(
Suraj Patil's avatar
Suraj Patil committed
247
248
249
250
            (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
        )
        padded_tensor[:, : tensor.shape[-1]] = tensor
        return padded_tensor