seq2seq_trainer.py 10.9 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import Any, Dict, List, Optional, Tuple, Union
Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
20

import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler

21
from transformers import PreTrainedModel, Trainer, logging
Suraj Patil's avatar
Suraj Patil committed
22
from transformers.file_utils import is_torch_tpu_available
23
from transformers.integrations import is_fairscale_available
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
25
26
27
28
29
30
31
32
33
34
from transformers.optimization import (
    Adafactor,
    AdamW,
    get_constant_schedule,
    get_constant_schedule_with_warmup,
    get_cosine_schedule_with_warmup,
    get_cosine_with_hard_restarts_schedule_with_warmup,
    get_linear_schedule_with_warmup,
    get_polynomial_decay_schedule_with_warmup,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from transformers.trainer_pt_utils import get_tpu_sampler
36
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
37
38


39
40
41
42
if is_fairscale_available():
    from fairscale.optim import OSS


43
logger = logging.get_logger(__name__)
Suraj Patil's avatar
Suraj Patil committed
44

45
46
47
48
49
50
51
52
53
arg_to_scheduler = {
    "linear": get_linear_schedule_with_warmup,
    "cosine": get_cosine_schedule_with_warmup,
    "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
    "polynomial": get_polynomial_decay_schedule_with_warmup,
    "constant": get_constant_schedule,
    "constant_w_warmup": get_constant_schedule_with_warmup,
}

Suraj Patil's avatar
Suraj Patil committed
54
55

class Seq2SeqTrainer(Trainer):
56
    def __init__(self, config=None, data_args=None, *args, **kwargs):
57
        super().__init__(*args, **kwargs)
58
59
60
61
62

        if config is None:
            assert isinstance(
                self.model, PreTrainedModel
            ), f"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is {self.model.__class__}"
63
            self.config = self.model.config
64
65
66
        else:
            self.config = config

67
        self.data_args = data_args
68
        self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size
69

70
71
72
73
74
        if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
            assert (
                self.config.pad_token_id is not None
            ), "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss calculation or doing label smoothing."

75
76
77
78
79
        if self.config.pad_token_id is None and self.config.eos_token_id is not None:
            logger.warn(
                f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for padding.."
            )

80
81
82
83
        if self.args.label_smoothing == 0:
            self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
        else:
            # dynamically import label_smoothed_nll_loss
84
            from utils import label_smoothed_nll_loss
85
86
87

            self.loss_fn = label_smoothed_nll_loss

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def create_optimizer_and_scheduler(self, num_training_steps: int):
        """
        Setup the optimizer and the learning rate scheduler.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
        """
        if self.optimizer is None:
            no_decay = ["bias", "LayerNorm.weight"]
            optimizer_grouped_parameters = [
                {
                    "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
                    "weight_decay": 0.0,
                },
            ]
107
            optimizer_cls = Adafactor if self.args.adafactor else AdamW
108
            if self.args.adafactor:
109
110
                optimizer_cls = Adafactor
                optimizer_kwargs = {"scale_parameter": False, "relative_step": False}
111
            else:
112
113
114
115
116
117
118
119
120
121
122
                optimizer_cls = AdamW
                optimizer_kwargs = {
                    "betas": (self.args.adam_beta1, self.args.adam_beta2),
                    "eps": self.args.adam_epsilon,
                }
            optimizer_kwargs["lr"] = self.args.learning_rate
            if self.sharded_dpp:
                self.optimizer = OSS(
                    params=optimizer_grouped_parameters,
                    optim=optimizer_cls,
                    **optimizer_kwargs,
123
                )
124
125
            else:
                self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
126
127

        if self.lr_scheduler is None:
128
129
130
131
132
133
134
135
136
137
138
139
            self.lr_scheduler = self._get_lr_scheduler(num_training_steps)
        else:  # ignoring --lr_scheduler
            logger.warn("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.")

    def _get_lr_scheduler(self, num_training_steps):
        schedule_func = arg_to_scheduler[self.args.lr_scheduler]
        if self.args.lr_scheduler == "constant":
            scheduler = schedule_func(self.optimizer)
        elif self.args.lr_scheduler == "constant_w_warmup":
            scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps)
        else:
            scheduler = schedule_func(
140
141
                self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
            )
142
        return scheduler
143

Suraj Patil's avatar
Suraj Patil committed
144
145
146
147
148
149
150
151
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
            return None
        elif is_torch_tpu_available():
            return get_tpu_sampler(self.train_dataset)
        else:
            if self.args.sortish_sampler:
                self.train_dataset.make_sortish_sampler(
152
                    self.args.per_device_train_batch_size,
153
                    distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
154
155
156
157
158
159
160
161
                )

            return (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

162
    def _compute_loss(self, model, inputs, labels):
Suraj Patil's avatar
Suraj Patil committed
163
        if self.args.label_smoothing == 0:
164
165
166
            if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
                # force training to ignore pad token
                logits = model(**inputs, use_cache=False)[0]
167
                loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1))
168
169
            else:
                # compute usual loss via models
170
                loss, logits = model(**inputs, labels=labels, use_cache=False)[:2]
Suraj Patil's avatar
Suraj Patil committed
171
        else:
172
173
            # compute label smoothed loss
            logits = model(**inputs, use_cache=False)[0]
Suraj Patil's avatar
Suraj Patil committed
174
            lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
175
            loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id)
176
177
178
        return loss, logits

    def compute_loss(self, model, inputs):
179
180
        labels = inputs.pop("labels")
        loss, _ = self._compute_loss(model, inputs, labels)
Suraj Patil's avatar
Suraj Patil committed
181
182
183
        return loss

    def prediction_step(
184
185
186
187
188
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
Suraj Patil's avatar
Suraj Patil committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.

        Return:
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
            A tuple with the loss, logits and labels (each being optional).
        """
        inputs = self._prepare_inputs(inputs)

212
213
214
215
216
217
218
        gen_kwargs = {
            "max_length": self.data_args.val_max_target_length
            if self.data_args is not None
            else self.config.max_length,
            "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
        }

219
        if self.args.predict_with_generate and not self.args.prediction_loss_only:
220
            generated_tokens = self.model.generate(
221
222
223
224
225
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                **gen_kwargs,
            )
            # in case the batch is shorter than max length, the output should be padded
226
            if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
227
228
                generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])

229
        labels = inputs.pop("labels")
Suraj Patil's avatar
Suraj Patil committed
230
        with torch.no_grad():
231
232
            # compute loss on predict data
            loss, logits = self._compute_loss(model, inputs, labels)
233
234
235
236
237
238
239

        loss = loss.mean().detach()
        if self.args.prediction_loss_only:
            return (loss, None, None)

        logits = generated_tokens if self.args.predict_with_generate else logits

240
241
        if labels.shape[-1] < gen_kwargs["max_length"]:
            labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
242
243

        return (loss, logits, labels)
Suraj Patil's avatar
Suraj Patil committed
244

245
    def _pad_tensors_to_max_len(self, tensor, max_length):
246
247
248
249
250
251
252
253
254
        # If PAD token is not defined at least EOS token has to be defined
        pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id

        if pad_token_id is None:
            raise ValueError(
                f"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be padded to `max_length`={max_length}"
            )

        padded_tensor = pad_token_id * torch.ones(
Suraj Patil's avatar
Suraj Patil committed
255
256
257
258
            (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
        )
        padded_tensor[:, : tensor.shape[-1]] = tensor
        return padded_tensor