test_trainer.py 4.65 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import unittest

from transformers import AutoTokenizer, TrainingArguments, is_torch_available

from .utils import require_torch


if is_torch_available():
    import torch
    from transformers import (
        Trainer,
        LineByLineTextDataset,
        AutoModelForSequenceClassification,
        DefaultDataCollator,
        DataCollatorForLanguageModeling,
        GlueDataset,
        GlueDataTrainingArguments,
        TextDataset,
    )


PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
    def test_default_classification(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
31
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
32
        )
33
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
34
35
36
37
38
39
40
41
        data_collator = DefaultDataCollator()
        batch = data_collator.collate_batch(dataset.features)
        self.assertEqual(batch["labels"].dtype, torch.long)

    def test_default_regression(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
42
            task_name="sts-b", data_dir="./tests/fixtures/tests_samples/STS-B", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
43
        )
44
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        data_collator = DefaultDataCollator()
        batch = data_collator.collate_batch(dataset.features)
        self.assertEqual(batch["labels"].dtype, torch.float)

    def test_lm_tokenizer_without_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        # ^ causal lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing on gpt2:
            data_collator.collate_batch(examples)

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator.collate_batch(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

    def test_lm_tokenizer_with_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
        data_collator = DataCollatorForLanguageModeling(tokenizer)
        # ^ masked lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator.collate_batch(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((31, 107)))
        self.assertEqual(batch["masked_lm_labels"].shape, torch.Size((31, 107)))

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator.collate_batch(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["masked_lm_labels"].shape, torch.Size((2, 512)))


@require_torch
class TrainerIntegrationTest(unittest.TestCase):
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
94
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
95
        )
96
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
97
98
99
100

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
101
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
102
103
104
105
106
107
108
109

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence,
        )
        self.assertEqual(len(dataset), 31)