test_pipelines_text_generation.py 18.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TextGenerationPipeline,
    logging,
    pipeline,
)
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    is_pipeline_test,
27
28
29
    require_accelerate,
    require_tf,
    require_torch,
30
    require_torch_accelerator,
31
    require_torch_gpu,
32
    require_torch_or_tf,
33
    torch_device,
34
)
35

36
from .test_pipelines_common import ANY
37
38


39
@is_pipeline_test
40
@require_torch_or_tf
41
class TextGenerationPipelineTests(unittest.TestCase):
42
43
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
44

45
46
47
48
49
50
51
52
53
    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
58
59
60
                }
            ],
        )
61

62
63
64
65
66
67
        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
71
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
72
73
74
75
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
80
81
                    }
                ],
82
83
84
85
86
87
88
89
90
91
92
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
93
94
95

        ## -- test tokenizer_kwargs
        test_str = "testing tokenizer kwargs. using truncation must result in a different generation."
96
        input_len = len(text_generator.tokenizer(test_str)["input_ids"])
97
        output_str, output_str_with_truncation = (
98
            text_generator(test_str, do_sample=False, return_full_text=False, min_new_tokens=1)[0]["generated_text"],
99
100
101
102
            text_generator(
                test_str,
                do_sample=False,
                return_full_text=False,
103
                min_new_tokens=1,
104
                truncation=True,
105
                max_length=input_len + 1,
106
107
            )[0]["generated_text"],
        )
108
        assert output_str != output_str_with_truncation  # results must be different because one had truncation
109
110

        # -- what is the point of this test? padding is hardcoded False in the pipeline anyway
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
131
132
            ],
        )
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    @require_torch
    def test_small_chat_model_pt(self):
        text_generator = pipeline(
            task="text-generation", model="rocketknight1/tiny-gpt2-with-chatml-template", framework="pt"
        )
        # Using `do_sample=False` to force deterministic output
        chat1 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a test"},
            {"role": "assistant", "content": "This is a reply"},
        ]
        chat2 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a second test"},
            {"role": "assistant", "content": "This is a reply"},
        ]
        outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
        expected_chat1 = chat1 + [
            {
                "role": "assistant",
                "content": " factors factors factors factors factors factors factors factors factors factors",
            }
        ]
        self.assertEqual(
            outputs,
            [
                {"generated_text": expected_chat1},
            ],
        )

        outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10)
        expected_chat2 = chat2 + [
            {
                "role": "assistant",
                "content": " factors factors factors factors factors factors factors factors factors factors",
            }
        ]

        self.assertEqual(
            outputs,
            [
                [{"generated_text": expected_chat1}],
                [{"generated_text": expected_chat2}],
            ],
        )

180
181
182
    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
183

184
185
186
187
188
189
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
192
193
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
194
195
196
                }
            ],
        )
197

198
199
200
201
202
203
        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
208
209
210
211
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
214
215
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
216
217
218
219
                    }
                ],
            ],
        )
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    @require_tf
    def test_small_chat_model_tf(self):
        text_generator = pipeline(
            task="text-generation", model="rocketknight1/tiny-gpt2-with-chatml-template", framework="tf"
        )
        # Using `do_sample=False` to force deterministic output
        chat1 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a test"},
            {"role": "assistant", "content": "This is a reply"},
        ]
        chat2 = [
            {"role": "system", "content": "This is a system message."},
            {"role": "user", "content": "This is a second test"},
            {"role": "assistant", "content": "This is a reply"},
        ]
        outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
        expected_chat1 = chat1 + [
            {
                "role": "assistant",
                "content": " factors factors factors factors factors factors factors factors factors factors",
            }
        ]
        self.assertEqual(
            outputs,
            [
                {"generated_text": expected_chat1},
            ],
        )

        outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10)
        expected_chat2 = chat2 + [
            {
                "role": "assistant",
                "content": " factors factors factors factors factors factors factors factors factors factors",
            }
        ]

        self.assertEqual(
            outputs,
            [
                [{"generated_text": expected_chat1}],
                [{"generated_text": expected_chat2}],
            ],
        )

267
    def get_test_pipeline(self, model, tokenizer, processor):
268
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
269
270
        return text_generator, ["This is a test", "Another test"]

271
    @require_torch  # See https://github.com/huggingface/transformers/issues/30117
272
273
274
275
276
277
278
279
280
281
282
283
    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

284
285
286
287
    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

288
        outputs = text_generator("This is a test")
289
290
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
291
292

        outputs = text_generator("This is a test", return_full_text=False)
293
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
294
295
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

296
        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
297
        outputs = text_generator("This is a test")
298
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
299
300
301
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
302
303
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

326
327
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
Nicolas Patry's avatar
Nicolas Patry committed
328
329
330
331
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)
332

333
334
335
336
        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
337
338
339
340
341
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
342
343
344
345
346
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")
347
348
349
350
351
352
353
354

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
Suraj Patil's avatar
Suraj Patil committed
355
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
356
357
358
359
360
361
        EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
            "RwkvForCausalLM",
            "XGLMForCausalLM",
            "GPTNeoXForCausalLM",
            "FuyuForCausalLM",
        ]
362
363
364
365
        if (
            tokenizer.model_max_length < 10000
            and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
        ):
366
367
368
369
370
371
372
373
374
375
376
377
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

420
        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
421
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
422
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
423
424
425
426
427
428
429
430
431
432
433
434
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )
435
436

    @require_torch
437
    @require_torch_accelerator
438
439
440
    def test_small_model_fp16(self):
        import torch

441
442
443
444
445
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device=torch_device,
            torch_dtype=torch.float16,
        )
446
        pipe("This is a test")
447
448
449

    @require_torch
    @require_accelerate
450
    @require_torch_accelerator
451
452
453
    def test_pipeline_accelerate_top_p(self):
        import torch

454
455
456
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom", device_map=torch_device, torch_dtype=torch.float16
        )
457
        pipe("This is a test", do_sample=True, top_p=0.5)
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

    def test_pipeline_length_setting_warning(self):
        prompt = """Hello world"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        if text_generator.model.framework == "tf":
            logger = logging.get_logger("transformers.generation.tf_utils")
        else:
            logger = logging.get_logger("transformers.generation.utils")
        logger_msg = "Both `max_new_tokens`"  # The beggining of the message to be checked in this test

        # Both are set by the user -> log warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=1)
        self.assertIn(logger_msg, cl.out)

        # The user only sets one -> no warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_new_tokens=1)
        self.assertNotIn(logger_msg, cl.out)

        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10)
        self.assertNotIn(logger_msg, cl.out)