run_pplm.py 27.4 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: add code for training a custom discriminator

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
python examples/run_pplm.py -D sentiment --label_class 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""

import argparse
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

37
from examples.run_pplm_discrim_train import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
42
43
44
45
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
Piero Molino's avatar
Piero Molino committed
46
SmallConst = 1e-15
Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
TOKENIZER = GPT2Tokenizer.from_pretrained("gpt2-medium")

BAG_OF_WORDS_ARCHIVE_MAP = {
    'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt",
    'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
    'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
    'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
    },
    "sentiment": {
Piero Molino's avatar
Piero Molino committed
71
        "url": "http://s.yosinski.com/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
    },
    "toxicity": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_toxic": 0, "toxic": 1},
        "default_class": 0,
    },
}


Piero Molino's avatar
Piero Molino committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def to_var(x, requires_grad=False, volatile=False):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins,
                               torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10,
                           logits)


111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def perturb_past(
        past,
        model,
        prev,
        unpert_past=None,
        unpert_logits=None,
        accumulated_hidden=None,
        grad_norms=None,
        stepsize=0.01,
        classifier=None,
        label_class=None,
        one_hot_bows_vectors=None,
        loss_type=0,
        num_iterations=3,
        kl_scale=0.01,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
131
    # def perturb_past(past, model, prev, classifier, good_index=None,
132
133
134
135
136
137
138
139
140
141
142
143
    #             stepsize=0.01, vocab_size=50257,
    #             original_probs=None, accumulated_hidden=None, true_past=None,
    #             grad_norms=None):

    # one_hot_bows_vectors = []
    # for good_list in good_index:
    #     good_list = list(filter(lambda x: len(x) <= 1, good_list))
    #     good_list = torch.tensor(good_list).cuda()
    #     num_good = good_list.shape[0]
    #     one_hot_good = torch.zeros(num_good, vocab_size).cuda()
    #     one_hot_good.scatter_(1, good_list, 1)
    #     one_hot_bows_vectors.append(one_hot_good)
Piero Molino's avatar
Piero Molino committed
144
145
146
147
148

    # Generate inital perturbed past
    past_perturb_orig = [
        (np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
        for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
149
150
151
152

    if accumulated_hidden is None:
        accumulated_hidden = 0

153
    if decay:
Piero Molino's avatar
Piero Molino committed
154
155
        decay_mask = torch.arange(0., 1.0 + SmallConst, 1.0 / (window_length))[
                     1:]
Julien Chaumond's avatar
Julien Chaumond committed
156
157
158
    else:
        decay_mask = 1.0

Piero Molino's avatar
Piero Molino committed
159
160
161
162
163
164
165
166
167
168
169
    # Generate a mask is gradient perturbated is based on a past window
    _, _, _, current_length, _ = past[0].shape

    if current_length > window_length and window_length > 0:
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [window_length]) + tuple(
            past[0].shape[-1:])

        zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [current_length - window_length]) + tuple(
            past[0].shape[-1:])
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
173
174

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

Piero Molino's avatar
Piero Molino committed
175
176
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)),
                                dim=-2).cuda()
Julien Chaumond's avatar
Julien Chaumond committed
177
178
179
180
    else:
        window_mask = torch.ones_like(past[0]).cuda()

    loss_per_iter = []
181
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
182
        print("Iteration ", i + 1)
Piero Molino's avatar
Piero Molino committed
183
184
        past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
        past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
Julien Chaumond's avatar
Julien Chaumond committed
185

Piero Molino's avatar
Piero Molino committed
186
        perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
187

Piero Molino's avatar
Piero Molino committed
188
        _, _, _, current_length, _ = past_perturb[0].shape
Julien Chaumond's avatar
Julien Chaumond committed
189

Piero Molino's avatar
Piero Molino committed
190
191
        # _, future_past = model(prev, past=perturbed_past)
        # hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
192

Piero Molino's avatar
Piero Molino committed
193
194
195
196
197
198
199
200
201
202
203
        # Piero modified model call
        logits, _, all_hidden = model(prev, past=perturbed_past)
        hidden = all_hidden[-1]
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden,
                                                                dim=1).detach()

        # TODO: Check the layer-norm consistency of this with trained discriminator
        logits = logits[:, -1, :]
        probabs = F.softmax(logits, dim=-1)
        loss = 0.0
        loss_list = []
204
205
        if loss_type == 1 or loss_type == 3:
            for one_hot_good in one_hot_bows_vectors:
Piero Molino's avatar
Piero Molino committed
206
207
208
209
210
211
212
213
214
                good_logits = torch.mm(probabs, torch.t(one_hot_good))
                loss_word = good_logits
                loss_word = torch.sum(loss_word)
                loss_word = -torch.log(loss_word)
                # loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
                loss += loss_word
                loss_list.append(loss_word)
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

215
        if loss_type == 2 or loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
216
            ce_loss = torch.nn.CrossEntropyLoss()
217
218
            new_true_past = unpert_past
            for i in range(horizon_length):
Piero Molino's avatar
Piero Molino committed
219
220
221
222
223
224
225
226
227
228
229
                future_probabs = F.softmax(logits, dim=-1)  # Get softmax
                future_probabs = torch.unsqueeze(future_probabs, dim=1)

                # _, new_true_past = model(future_probabs, past=new_true_past)
                # future_hidden = model.hidden_states  # Get expected hidden states

                # Piero modified model call
                wte = model.resize_token_embeddings()
                inputs_embeds = torch.matmul(future_probabs, wte.weight.data)
                _, new_true_past, future_hidden = model(
                    past=new_true_past,
Julien Chaumond's avatar
Julien Chaumond committed
230
231
                    inputs_embeds=inputs_embeds
                )
Piero Molino's avatar
Piero Molino committed
232
233
234
235
                future_hidden = future_hidden[-1]

                new_accumulated_hidden = new_accumulated_hidden + torch.sum(
                    future_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
236

Piero Molino's avatar
Piero Molino committed
237
            predicted_sentiment = classifier(new_accumulated_hidden / (
238
                    current_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
239

240
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
241
242
                                 dtype=torch.long)
            discrim_loss = ce_loss(predicted_sentiment, label)
Julien Chaumond's avatar
Julien Chaumond committed
243
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
244
245
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
246

Piero Molino's avatar
Piero Molino committed
247
248
        kl_loss = 0.0
        if kl_scale > 0.0:
249
            p = (F.softmax(unpert_logits[:, -1, :], dim=-1))
Piero Molino's avatar
Piero Molino committed
250
251
252
253
254
            p = p + SmallConst * (p <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            correction = SmallConst * (probabs <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            corrected_probabs = probabs + correction.detach()
Rosanne Liu's avatar
Rosanne Liu committed
255
            kl_loss = kl_scale * (
Piero Molino's avatar
Piero Molino committed
256
                (corrected_probabs * (corrected_probabs / p).log()).sum())
Julien Chaumond's avatar
Julien Chaumond committed
257
            print(' kl_loss', (kl_loss).data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
258
            loss += kl_loss  # + discrim_loss
Julien Chaumond's avatar
Julien Chaumond committed
259
260

        loss_per_iter.append(loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
261

Julien Chaumond's avatar
Julien Chaumond committed
262
263
        print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())

Rosanne Liu's avatar
Rosanne Liu committed
264
        loss.backward()
265
        if grad_norms is not None and loss_type == 1:
Julien Chaumond's avatar
Julien Chaumond committed
266
267
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
Piero Molino's avatar
Piero Molino committed
268
269
                for index, p_ in
                enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
270
        else:
Piero Molino's avatar
Piero Molino committed
271
272
            grad_norms = [(torch.norm(p_.grad * window_mask) + SmallConst) for
                          index, p_ in enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
273
274

        grad = [
Piero Molino's avatar
Piero Molino committed
275
            -stepsize * (p_.grad * window_mask / grad_norms[
276
                index] ** gamma).data.cpu().numpy()
Piero Molino's avatar
Piero Molino committed
277
278
            for index, p_ in enumerate(past_perturb)]
        past_perturb_orig = list(map(add, grad, past_perturb_orig))
Julien Chaumond's avatar
Julien Chaumond committed
279

Piero Molino's avatar
Piero Molino committed
280
        for p_ in past_perturb:
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283
            p_.grad.data.zero_()

        new_past = []
Piero Molino's avatar
Piero Molino committed
284
285
286
        for p in past:
            new_past.append(p.detach())

Julien Chaumond's avatar
Julien Chaumond committed
287
288
        past = new_past

Piero Molino's avatar
Piero Molino committed
289
290
291
    past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
    past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
    perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
292

Piero Molino's avatar
Piero Molino committed
293
    return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
294
295
296


def get_classifier(
Piero Molino's avatar
Piero Molino committed
297
298
        name: Optional[str], label_class: Union[str, int],
        device: Union[str, torch.device]
Julien Chaumond's avatar
Julien Chaumond committed
299
300
301
302
303
304
305
306
307
308
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
    classifier = ClassificationHead(
        class_size=params['class_size'],
        embed_size=params['embed_size']
    ).to(device)
    resolved_archive_file = cached_path(params["url"])
Piero Molino's avatar
Piero Molino committed
309
310
    classifier.load_state_dict(
        torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    classifier.eval()

    if isinstance(label_class, str):
        if label_class in params["class_vocab"]:
            label_id = params["class_vocab"][label_class]
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    elif isinstance(label_class, int):
        if label_class in set(params["class_vocab"].values()):
            label_id = label_class
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


Piero Molino's avatar
Piero Molino committed
337
338
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str]) -> List[
    List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
339
340
341
342
343
344
345
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
346
347
348
349
            words = f.read().strip().split("\n")
        bow_indices.append(
            [TOKENIZER.encode(word.strip(), add_prefix_space=True) for word in
             words])
Julien Chaumond's avatar
Julien Chaumond committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    return bow_indices


def build_bows_one_hot_vectors(bow_indices):
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
        single_bow = torch.tensor(single_bow).cuda()
        num_words = single_bow.shape[0]
        one_hot_bow = torch.zeros(num_words, TOKENIZER.vocab_size).cuda()
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


368
def full_text_generation(
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        model,
        context=None,
        num_samples=1,
        device="cuda",
        sample=True,
        discrim=None,
        label_class=None,
        bag_of_words=None,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
        **kwargs
):
Julien Chaumond's avatar
Julien Chaumond committed
391
    classifier, class_id = get_classifier(
392
393
        discrim,
        label_class,
Julien Chaumond's avatar
Julien Chaumond committed
394
395
396
        device
    )

397
398
399
    bow_indices = []
    if bag_of_words:
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"))
Piero Molino's avatar
Piero Molino committed
400

401
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
402
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
403
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
404

405
406
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
407
408
409
        print("Using PPLM-BoW")

    elif classifier is not None:
410
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
411
412
413
        print("Using PPLM-Discrim")

    else:
414
        raise Exception("Specify either a bag of words or a discriminator")
Julien Chaumond's avatar
Julien Chaumond committed
415

416
    unpert_gen_tok_text, _, _ = generate_text_pplm(
417
418
419
420
421
422
        model=model,
        context=context,
        device=device,
        length=length,
        perturb=False
    )
Julien Chaumond's avatar
Julien Chaumond committed
423
424
    torch.cuda.empty_cache()

425
426
427
    pert_gen_tok_texts = []
    discrim_losses = []
    losses_in_time = []
Piero Molino's avatar
Piero Molino committed
428

429
    for i in range(num_samples):
430
        pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            model=model,
            context=context,
            device=device,
            sample=sample,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
            label_class=class_id,
            loss_type=loss_type,
            length=length,
            grad_length=grad_length,
            stepsize=stepsize,
            num_iterations=num_iterations,
            temperature=temperature,
            gm_scale=gm_scale,
            kl_scale=kl_scale,
            top_k=top_k,
            window_length=window_length,
            horizon_length=horizon_length,
            decay=decay,
            gamma=gamma,
        )
453
        pert_gen_tok_texts.append(pert_gen_tok_text)
Julien Chaumond's avatar
Julien Chaumond committed
454
        if classifier is not None:
455
456
            discrim_losses.append(discrim_loss.data.cpu().numpy())
        losses_in_time.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
457
458
459

    torch.cuda.empty_cache()

460
    return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
Julien Chaumond's avatar
Julien Chaumond committed
461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

def generate_text_pplm(
        model,
        context=None,
        past=None,
        device="cuda",
        sample=True,
        perturb=True,
        classifier=None,
        label_class=None,
        bow_indices=None,
        loss_type=0,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
Piero Molino's avatar
Piero Molino committed
487
488
    output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(
        0) if context else None
Julien Chaumond's avatar
Julien Chaumond committed
489

490
491
492
    # collect one hot vectors for bags of words
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices)

Julien Chaumond's avatar
Julien Chaumond committed
493
494
    grad_norms = None
    loss_in_time = []
495
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
496
497

        # Get past/probs for current output, except for last word
Piero Molino's avatar
Piero Molino committed
498
499
        # Note that GPT takes 2 inputs: past + current-token
        # Therefore, use everything from before current i/p token to generate relevant past
Julien Chaumond's avatar
Julien Chaumond committed
500

Piero Molino's avatar
Piero Molino committed
501
502
503
504
505
        if past is None and output is not None:
            prev = output[:, -1:]
            # _, past = model(output[:, :-1])
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
506

Piero Molino's avatar
Piero Molino committed
507
508
            # Piero modified model call
            _, past, _ = model(output[:, :-1])
509
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
510
            true_hidden = unpert_all_hidden[-1]
Julien Chaumond's avatar
Julien Chaumond committed
511
512

        else:
Piero Molino's avatar
Piero Molino committed
513
514
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
515

Piero Molino's avatar
Piero Molino committed
516
            # Piero modified model call
517
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
518
519
520
521
            true_hidden = unpert_all_hidden[-1]

        # Modify the past if necessary

522
523
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
524
        else:
525
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
526

527
        if not perturb or num_iterations == 0:
Piero Molino's avatar
Piero Molino committed
528
            perturbed_past = past
Julien Chaumond's avatar
Julien Chaumond committed
529
530

        else:
Piero Molino's avatar
Piero Molino committed
531
532
533
            # Piero modified model call
            # accumulated_hidden = model.hidden_states[:, :-1, :]
            accumulated_hidden = true_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
534
535
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

536
            perturbed_past, _, grad_norms, loss_per_iter = perturb_past(
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
                past,
                model,
                prev,
                unpert_past=unpert_past,
                unpert_logits=unpert_logits,
                accumulated_hidden=accumulated_hidden,
                grad_norms=grad_norms,
                stepsize=current_stepsize,
                classifier=classifier,
                label_class=label_class,
                one_hot_bows_vectors=one_hot_bows_vectors,
                loss_type=loss_type,
                num_iterations=num_iterations,
                kl_scale=kl_scale,
                window_length=window_length,
                horizon_length=horizon_length,
                decay=decay,
                gamma=gamma,
            )
Piero Molino's avatar
Piero Molino committed
556
557
558
559
560
561
562
            loss_in_time.append(loss_per_iter)

        # Piero modified model call
        logits, past, pert_all_hidden = model(prev, past=perturbed_past)
        # test_logits = F.softmax(test_logits[:, -1, :], dim=-1)
        # likelywords = torch.topk(test_logits, k=10, dim=-1)
        # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
563
564

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
565
566
            ce_loss = torch.nn.CrossEntropyLoss()
            predicted_sentiment = classifier(torch.mean(true_hidden, dim=1))
567
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
568
569
570
                                 dtype=torch.long)
            true_discrim_loss = ce_loss(predicted_sentiment, label)
            print("true discrim loss", true_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
571
        else:
Piero Molino's avatar
Piero Molino committed
572
573
574
575
576
            true_discrim_loss = 0

        # Piero modified model call
        # hidden = model.hidden_states  # update hidden
        # logits = model.forward_hidden(hidden)
577
        logits = logits[:, -1, :] / temperature  # + SmallConst
Piero Molino's avatar
Piero Molino committed
578
579

        # logits = top_k_filter(logits, k=args.top_k)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
580

Piero Molino's avatar
Piero Molino committed
581
582
583
        log_probs = F.softmax(logits, dim=-1)

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
584
585
        if perturb:

Piero Molino's avatar
Piero Molino committed
586
            # original_probs = top_k_filter(original_probs[:, -1, :]) #+ SmallConst
587
            unpert_logits = F.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
588
589
590
591
            # likelywords = torch.topk(original_probs, k=10, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))

            log_probs = ((log_probs ** gm_scale) * (
592
                    unpert_logits ** (1 - gm_scale)))  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
593

594
            log_probs = top_k_filter(log_probs, k=top_k,
Piero Molino's avatar
Piero Molino committed
595
                                     probs=True)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
596

Piero Molino's avatar
Piero Molino committed
597
598
            if torch.sum(log_probs) <= 1:
                log_probs = log_probs / torch.sum(log_probs)
Julien Chaumond's avatar
Julien Chaumond committed
599
600

        else:
601
            logits = top_k_filter(logits, k=top_k)  # + SmallConst
Piero Molino's avatar
Piero Molino committed
602
            log_probs = F.softmax(logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
603
604

        if sample:
Piero Molino's avatar
Piero Molino committed
605
606
607
608
            # likelywords = torch.topk(log_probs, k=args.top_k, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
            # print(likelywords[0].tolist())
            prev = torch.multinomial(log_probs, num_samples=1)
Julien Chaumond's avatar
Julien Chaumond committed
609
        else:
Piero Molino's avatar
Piero Molino committed
610
611
612
613
614
615
            _, prev = torch.topk(log_probs, k=1, dim=-1)
        # if perturb:
        #     prev = future
        output = prev if output is None else torch.cat((output, prev),
                                                       dim=1)  # update output
        print(TOKENIZER.decode(output.tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
616

Piero Molino's avatar
Piero Molino committed
617
    return output, true_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
618
619
620
621


def run_model():
    parser = argparse.ArgumentParser()
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    parser.add_argument(
        "--model_path",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
        help="Bags of words used for PPLM-BoW. "
             "Either a BOW id (see list in code) or a filepath. "
             "Multiple BoWs separated by ;",
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity"),
        help="Discriminator to use for loss-type 2",
    )
    parser.add_argument(
        "--label_class",
        type=int,
        default=-1,
        help="Class label used for the discriminator",
    )
    parser.add_argument("--stepsize", type=float, default=0.02)
Julien Chaumond's avatar
Julien Chaumond committed
653
654
655
656
657
658
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
    parser.add_argument(
        "--uncond", action="store_true",
        help="Generate from end-of-text as prefix"
    )
    parser.add_argument(
        "--cond_text", type=str, default="The lake",
        help="Prefix texts to condition on"
    )
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
        "--num_samples",
        type=int,
        default=1,
        help="Number of samples to generate from the modified latents",
    )
    parser.add_argument(
        "--horizon_length",
        type=int,
        default=1,
        help="Length of future to optimize over",
    )
    parser.add_argument(
        "--window_length",
        type=int,
        default=0,
        help="Length of past which is being optimized; "
             "0 corresponds to infinite window length",
    )
    parser.add_argument("--decay", action="store_true",
                        help="whether to decay or not")
    parser.add_argument("--gamma", type=float, default=1.5)
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
Julien Chaumond's avatar
Julien Chaumond committed
693
694
695

    args = parser.parse_args()

696
    # set Random seed
Julien Chaumond's avatar
Julien Chaumond committed
697
698
699
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

700
701
    # set the device
    device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
Julien Chaumond's avatar
Julien Chaumond committed
702

703
    # load pretrained model
Julien Chaumond's avatar
Julien Chaumond committed
704
705
706
707
708
709
710
    model = GPT2LMHeadModel.from_pretrained(
        args.model_path,
        output_hidden_states=True
    )
    model.to(device)
    model.eval()

Piero Molino's avatar
Piero Molino committed
711
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
712
713
714
    for param in model.parameters():
        param.requires_grad = False

715
    # figure out conditioning text
Julien Chaumond's avatar
Julien Chaumond committed
716
    if args.uncond:
717
718
719
        tokenized_cond_text = TOKENIZER.encode(
            [TOKENIZER.bos_token]
        )
Julien Chaumond's avatar
Julien Chaumond committed
720
721
722
    else:
        raw_text = args.cond_text
        while not raw_text:
723
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
724
            raw_text = input("Model prompt >>> ")
725
        tokenized_cond_text = TOKENIZER.encode(TOKENIZER.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
726

727
728
729
    print("= Prefix of sentence =")
    print(TOKENIZER.decode(tokenized_cond_text))
    print()
Piero Molino's avatar
Piero Molino committed
730

731
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
732

733
734
735
736
737
738
739
740
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
        model=model, context=tokenized_cond_text, device=device, **vars(args)
    )

    # untokenize unperturbed text
    unpert_gen_text = TOKENIZER.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
741

742
743
744
745
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
746

747
748
    generated_texts = []

749
750
751
752
753
754
755
756
    bow_word_ids = set()
    if args.bag_of_words and args.colorama:
        bow_indices = get_bag_of_words_indices(args.bag_of_words.split(";"))
        for single_bow_list in bow_indices:
            # filtering all words in the list composed of more than 1 token
            filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
            # w[0] because we are sure w has only 1 item because previous fitler
            bow_word_ids.update(w[0] for w in filtered)
757
758
759
760
761

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
Piero Molino's avatar
Piero Molino committed
762
763
764
            if args.colorama:
                import colorama

765
766
                pert_gen_text = ''
                for word_id in pert_gen_tok_text.tolist()[0]:
767
                    if word_id in bow_word_ids:
768
769
770
771
772
                        pert_gen_text += '{}{}{}'.format(
                            colorama.Fore.RED,
                            TOKENIZER.decode([word_id]),
                            colorama.Style.RESET_ALL
                        )
Piero Molino's avatar
Piero Molino committed
773
                    else:
774
                        pert_gen_text += TOKENIZER.decode([word_id])
Piero Molino's avatar
Piero Molino committed
775
            else:
776
                pert_gen_text = TOKENIZER.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
777

778
779
780
781
782
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
        except:
            pass
Julien Chaumond's avatar
Julien Chaumond committed
783

784
785
786
787
        # keep the prefix, perturbed seq, original seq for each index
        generated_texts.append(
            (tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)
        )
Julien Chaumond's avatar
Julien Chaumond committed
788

Piero Molino's avatar
Piero Molino committed
789
    return
Julien Chaumond's avatar
Julien Chaumond committed
790
791


Piero Molino's avatar
Piero Molino committed
792
if __name__ == '__main__':
Julien Chaumond's avatar
Julien Chaumond committed
793
    run_model()