modeling_xlnet.py 67.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
32
from torch.nn import functional as F
33
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
34

35
36
37
from .file_utils import cached_path
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig

thomwolf's avatar
thomwolf committed
38
39
40
41
42
43
44
45
46
47
48
49

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}
XLNET_CONFIG_NAME = 'xlnet_config.json'
TF_WEIGHTS_NAME = 'model.ckpt'

thomwolf's avatar
thomwolf committed
50

51
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None, finetuning_task=None):
thomwolf's avatar
thomwolf committed
52
53
54
55
56
57
58
59
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
60
61
62
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
63
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
64
65
66
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
67
        if hasattr(model, 'logits_proj') and finetuning_task is not None and 'model/regression_{}/logit/kernel'.format(finetuning_task) in tf_weights:
68
69
70
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(finetuning_task)] = model.logits_proj.bias

thomwolf's avatar
thomwolf committed
71
72
73
74
75
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
76
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

120
def load_tf_weights_in_xlnet(model, config, tf_path, finetuning_task=None):
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126
127
128
129
130
131
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
132
    tf_weights = {}
thomwolf's avatar
thomwolf committed
133
134
135
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
136
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
137

138
139
    input("Press Enter to continue...")

140
    # Build TF to PyTorch weights loading map
141
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights, finetuning_task)
142

thomwolf's avatar
thomwolf committed
143
144
    for name, pointer in tf_to_pt_map.items():
        print("Importing {}".format(name))
145
146
147
        if name not in tf_weights:
            print("{} not in tf pre-trained weights, skipping".format(name))
            continue
thomwolf's avatar
thomwolf committed
148
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
149
150
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
151
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
152
            print("Transposing")
thomwolf's avatar
thomwolf committed
153
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
179
180
181
182
    return model


def gelu(x):
183
184
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
185
186
        Also see https://arxiv.org/abs/1606.08415
    """
187
188
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
189
190
191
192
193
194
195
196
197


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


198
class XLNetConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
199
200
    """Configuration class to store the configuration of a `XLNetModel`.
    """
201
202
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
203
204
    def __init__(self,
                 vocab_size_or_config_json_file,
thomwolf's avatar
thomwolf committed
205
206
207
208
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
209
210
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
211
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
212
213
214

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
224
225
226
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False):
thomwolf's avatar
thomwolf committed
227
228
229
230
231
232
233
234
235
236
237
238
239
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
240
            attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
thomwolf's avatar
thomwolf committed
241
242
243
244
245
246
247
248
249
250
251

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
thomwolf's avatar
thomwolf committed
268
269
270
271
272
273
274
275
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
276
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
277
278
279
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
280
281
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
282
283
284
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
285
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
286

thomwolf's avatar
thomwolf committed
287
288
289
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
290
291
292
293
294
295
296
297
298
299
300

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
301
302
303
304
305
306
307
308
309
310
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
311
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
312
313
314
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
315
316
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
317
318
319
320
321
322
323
324
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
325
326
327
328
class XLNetRelativeAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetRelativeAttention, self).__init__()
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
329
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
330
331
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
332
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
333
334
335
336
        self.output_attentions = output_attentions
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
337
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
338
339
340
341
342
343
344
345
346
347
348
349
350
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
351
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
352

thomwolf's avatar
thomwolf committed
353
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
354
355
356
357
358
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
359
360
361
362
363
364
365
366
367
368
369
370
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
        x = x[:, 0:klen, :, :]

        return x

thomwolf's avatar
thomwolf committed
371
372
373
374
375
376
377
378
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None):
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
379
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
411
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
thomwolf's avatar
thomwolf committed
483
484
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503


        # Mask heads if we want to
        # if head_mask is not None:
        #     attention_probs = attention_probs * head_mask

        # context_layer = torch.matmul(attention_probs, value_layer)
        # if self.keep_multihead_output:
        #     self.multihead_output = context_layer
        #     self.multihead_output.retain_grad()

        # context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        # new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        # context_layer = context_layer.view(*new_context_layer_shape)

        # if self.output_attentions:
        #     attentions, self_output = self_output
        # if self.output_attentions:
        #     return attentions, attention_output
thomwolf's avatar
thomwolf committed
504
        return output_h, output_g
thomwolf's avatar
thomwolf committed
505
506
507
508

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
509
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
510
511
512
513
514
515
516
517
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
        if isinstance(config.ff_activation, str) or (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
518
519
520
521
522
523
524
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
525
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
526
        return output
thomwolf's avatar
thomwolf committed
527
528
529
530
531
532
533
534
535
536
537
538

class XLNetLayer(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetLayer, self).__init__()
        self.output_attentions = output_attentions
        self.rel_attn = XLNetRelativeAttention(config, output_attentions=output_attentions,
                                               keep_multihead_output=keep_multihead_output)
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
thomwolf's avatar
thomwolf committed
539
540
                r, seg_mat,
                mems=None, target_mapping=None, head_mask=None):
thomwolf's avatar
thomwolf committed
541
542
543
544
        output_h, output_g = self.rel_attn(output_h, output_g,
                                           attn_mask_h, attn_mask_g,
                                           r, seg_mat,
                                           mems=mems, target_mapping=target_mapping, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
545
        if output_g is not None:
thomwolf's avatar
thomwolf committed
546
547
548
549
550
551
552
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

        # if self.output_attentions:
        #     return attentions, layer_output
        return output_h, output_g

thomwolf's avatar
thomwolf committed
553
554
555
556
557
558
class XLNetPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__()
559
        if not isinstance(config, XLNetConfig):
thomwolf's avatar
thomwolf committed
560
            raise ValueError(
561
                "Parameter config in `{}(config)` should be an instance of class `XLNetConfig`. "
thomwolf's avatar
thomwolf committed
562
563
564
565
566
567
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

thomwolf's avatar
thomwolf committed
568
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
569
570
571
572
573
574
575
576
577
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
578
579
580
581
582
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        """
        Instantiate a XLNetPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `xlnet-large-cased`
                - a path or url to a pretrained model archive containing:
597
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
                    . `pytorch_model.bin` a PyTorch dump of a XLNetForPreTraining instance
                - a path or url to a pretrained model archive containing:
                    . `xlnet_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
            *inputs, **kwargs: additional input for the specific XLNet class
                (ex: num_labels for XLNetForSequenceClassification)
        """
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME)
                config_file = os.path.join(pretrained_model_name_or_path, XLNET_CONFIG_NAME)
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                        archive_file))
            return None
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()),
                        config_file))
            return None
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
667

thomwolf's avatar
thomwolf committed
668
669
        # Load config
        config = XLNetConfig.from_json_file(resolved_config_file)
670
671

        # Update config with kwargs if needed
672
673
        to_remove = []
        for key, value in kwargs.items():
674
675
            if hasattr(config, key):
                setattr(config, key, value)
676
677
678
679
680
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info("Model config {}".format(config))
681

thomwolf's avatar
thomwolf committed
682
683
684
685
686
687
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
688
689
            return load_tf_weights_in_xlnet(model, config, resolved_archive_file)

thomwolf's avatar
thomwolf committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
        start_prefix = ''
708
709
        if not hasattr(model, 'transformer') and any(s.startswith('transformer') for s in state_dict.keys()):
            start_prefix = 'transformer.'
thomwolf's avatar
thomwolf committed
710
711
712
713
714
715
716
717
718
719
        load(model, prefix=start_prefix)
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))
720
721
        if isinstance(model, XLNetLMHeadModel):
            model.tie_weights()  # make sure word embedding weights are still tied
thomwolf's avatar
thomwolf committed
722
723
724
725
        return model


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
726
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
727
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
728
729
730
        self.output_attentions = output_attentions
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
731
732
733
734
735
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
736

thomwolf's avatar
thomwolf committed
737
738
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
thomwolf's avatar
thomwolf committed
739
740
741
742
        layer = XLNetLayer(config, output_attentions=output_attentions,
                                   keep_multihead_output=keep_multihead_output)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layer)])
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
743

thomwolf's avatar
thomwolf committed
744
745
746
747
748
749
750
751
752
753
754
755
756
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.layer]

thomwolf's avatar
thomwolf committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
794
795
796
797
798
799
800
801
802
803
804
805
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
806
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
807
808
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
        inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
809
810
811
812
813
814
815
816
817
818
819

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
820
821
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
822
823
824
825
826
827

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
828
829
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
830
            else:
thomwolf's avatar
thomwolf committed
831
832
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
833
834
835

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
836
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
837
838
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
839
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
840

thomwolf's avatar
thomwolf committed
841
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
842
843
        return pos_emb

844
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
845
846
847
848
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                output_all_encoded_layers=True, head_mask=None):
        """
        Args:
849
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
850
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
851
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
852
                0 for real tokens and 1 for padding.
853
854
855
856
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
857
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
858
859
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
860
861
862
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
863
                If None, each position attends to all the others.
864
865
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
866
867
868
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
869
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
885
886
887
888
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
        inp_k = inp_k.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
889
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
890
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
891
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
892
893
894
895
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
896
        qlen, bsz = inp_k.shape[0], inp_k.shape[1]
thomwolf's avatar
thomwolf committed
897
898
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
899
900
901

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
902
903
904
905

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
906
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
907
908
909
910
911
912
913
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
914
915
916
917
918
919
920
921
922
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
923
924
925
926
927
928
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
929
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
930
931
932
933
934
935
936
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
937
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
938
939

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
940
941
942
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
943
944
945
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
946
947
        ##### Word embeddings and prepare h & g hidden states
        word_emb_k = self.word_embedding(inp_k)
thomwolf's avatar
thomwolf committed
948
949
950
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
951
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
952
953
            else:
                inp_q_ext = inp_q[:, :, None]
954
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
955
956
957
958
959
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
960
961
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
962
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
963
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
964
965

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
966
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
967
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
968
969
970
971
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
972
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
973
974
975
976
977
        pos_emb = self.dropout(pos_emb)

        ##### Head mask if needed (for bertology/pruning)
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
978
979
        # input head_mask has shape [num_heads] or [n_layer x num_heads]
        # and head_mask is converted to shape [n_layer x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
980
981
982
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
983
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
984
985
986
987
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
988
            head_mask = [None] * self.config.n_layer
thomwolf's avatar
thomwolf committed
989
990
991
992
993

        new_mems = []
        if mems is None:
            mems = [None] * len(self.layer)

994
        hidden_states = []
thomwolf's avatar
thomwolf committed
995
996
997
998
999
        for i, layer_module in enumerate(self.layer):
            # cache new mems
            new_mems.append(self.cache_mem(output_h, mems[i]))

            output_h, output_g = layer_module(output_h, output_g,
thomwolf's avatar
thomwolf committed
1000
1001
                                              attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                              r=pos_emb, seg_mat=seg_mat,
thomwolf's avatar
thomwolf committed
1002
1003
                                              mems=mems[i], target_mapping=target_mapping,
                                              head_mask=head_mask)
1004
            hidden_states.append(output_h)
thomwolf's avatar
thomwolf committed
1005
1006
        output = self.dropout(output_g if output_g is not None else output_h)

1007
1008
1009
1010
1011
        # We transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
        output = output.permute(1, 0, 2).contiguous()
        hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]

        return output, hidden_states, new_mems
thomwolf's avatar
thomwolf committed
1012
1013
1014


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
1024
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1025
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1026
        input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
1027
            0 for real tokens and 1 for padding.
1028
1029
1030
1031
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
thomwolf's avatar
thomwolf committed
1048
1049
1050
1051
1052
1053


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
1054
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
1055
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
1056
1057
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
1058
1059
1060
1061
1062
1063
1064
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1065
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1066
1067
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
1068
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
1069
        n_layer=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1070
1071

    model = modeling.XLNetModel(config=config)
1072
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1073
1074
    ```
    """
thomwolf's avatar
thomwolf committed
1075
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
1076
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
1077
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
1078
1079
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
1080

thomwolf's avatar
thomwolf committed
1081
1082
        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
1083
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
1084

thomwolf's avatar
thomwolf committed
1085
1086
        # Tie weights

thomwolf's avatar
thomwolf committed
1087
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1088
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1089

thomwolf's avatar
thomwolf committed
1090
1091
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
1092
        """
thomwolf's avatar
thomwolf committed
1093
        self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
1094

1095
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1096
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1097
                labels=None, output_all_encoded_layers=True, head_mask=None):
thomwolf's avatar
thomwolf committed
1098
1099
        """
        Args:
1100
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1101
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1102
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
1103
                0 for real tokens and 1 for padding.
1104
1105
1106
1107
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
1108
1109
1110
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1111
1112
1113
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1114
                If None, each position attends to all the others.
1115
1116
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1117
1118
1119
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1120
            inp_q: float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1121
1122
1123
1124
1125
1126
1127
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
1128
        output, hidden_states, new_mems = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
1129
1130
1131
1132
1133
                                            mems, perm_mask, target_mapping, inp_q,
                                            output_all_encoded_layers, head_mask)

        logits = self.lm_loss(output)

1134
        if labels is not None:
1135
1136
1137
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1138
                            labels.view(-1))
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
            return loss, new_mems

        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # sequence_output = encoded_layers[-1]
        # pooled_output = self.pooler(sequence_output)
        # if not output_all_encoded_layers:
        #     encoded_layers = encoded_layers[-1]
        # if self.output_attentions:
        return logits, new_mems
        #     return all_attentions, encoded_layers, pooled_output

1151
1152
1153
1154
1155
1156
class XLNetSequenceSummary(nn.Module):
    def __init__(self, config, summary_type="last", use_proj=True,
                 output_attentions=False, keep_multihead_output=False):
        super(XLNetSequenceSummary, self).__init__()
        self.summary_type = summary_type
        if use_proj:
thomwolf's avatar
thomwolf committed
1157
            self.summary = nn.Linear(config.d_model, config.d_model)
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        else:
            self.summary = None
        if summary_type == 'attn':
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError
        self.dropout = nn.Dropout(config.dropout)
        self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
1168
1169
    def forward(self, hidden_states):
        """ hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
1170
        if self.summary_type == 'last':
thomwolf's avatar
thomwolf committed
1171
            output = hidden_states[:, -1]
1172
        elif self.summary_type == 'first':
thomwolf's avatar
thomwolf committed
1173
            output = hidden_states[:, 0]
1174
        elif self.summary_type == 'mean':
thomwolf's avatar
thomwolf committed
1175
            output = hidden_states.mean(dim=1)
1176
1177
1178
1179
1180
        elif summary_type == 'attn':
            raise NotImplementedError

        output = self.summary(output)
        output = self.activation(output)
thomwolf's avatar
thomwolf committed
1181
        output = self.dropout(output)
1182
1183
        return output

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1198
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1199
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
1200
            0 for real tokens and 1 for padding.
1201
1202
1203
1204
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
1227
            if labels is None:
1228
1229
1230
1231
1232
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
1233
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
1234
1235
1236
1237
1238

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1239
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
1240
1241
1242
1243
1244
1245
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
1246
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1247
1248
    ```
    """
1249
    def __init__(self, config, summary_type="last", use_proj=True, num_labels=2,
1250
                 output_attentions=False, keep_multihead_output=False):
1251
1252
1253
1254
1255
        super(XLNetForSequenceClassification, self).__init__(config)
        self.output_attentions = output_attentions
        self.attn_type = config.attn_type
        self.same_length = config.same_length
        self.summary_type = summary_type
1256
        self.num_labels = num_labels
1257
1258
1259
1260

        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)

1261
1262
1263
        self.sequence_summary = XLNetSequenceSummary(config, summary_type=summary_type,
                                                     use_proj=use_proj, output_attentions=output_attentions,
                                                     keep_multihead_output=keep_multihead_output)
1264
        self.logits_proj = nn.Linear(config.d_model, num_labels)
thomwolf's avatar
thomwolf committed
1265
        self.apply(self.init_weights)
1266

1267
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
1268
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1269
                labels=None, output_all_encoded_layers=True, head_mask=None):
1270
1271
1272
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1273
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1274
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1275
                0 for real tokens and 1 for padding.
1276
1277
1278
1279
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
1297
        output, _, new_mems = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
1298
1299
                                               mems, perm_mask, target_mapping, inp_q,
                                               output_all_encoded_layers, head_mask)
thomwolf's avatar
thomwolf committed
1300

1301
        output = self.sequence_summary(output)
1302
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1303

1304
1305
1306
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1307
                loss_fct = MSELoss()
1308
                loss = loss_fct(logits.view(-1), labels.view(-1))
1309
            else:
1310
1311
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
1312
1313
            return loss, new_mems

thomwolf's avatar
thomwolf committed
1314
1315
1316
1317
1318
1319
1320
        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # sequence_output = encoded_layers[-1]
        # pooled_output = self.pooler(sequence_output)
        # if not output_all_encoded_layers:
        #     encoded_layers = encoded_layers[-1]
        # if self.output_attentions:
thomwolf's avatar
thomwolf committed
1321
        return logits, new_mems
thomwolf's avatar
thomwolf committed
1322
        #     return all_attentions, encoded_layers, pooled_output
thomwolf's avatar
thomwolf committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
    """XLNet model for Question Answering (span extraction).
    This module is composed of the XLNet model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1338
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1339
1340
1341
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLNet paper for more details).
1342
1343
1344
1345
1346
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
thomwolf's avatar
thomwolf committed
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1370
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1371
1372
1373
1374
1375
1376
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLNetForQuestionAnswering(config)
1377
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    ```
    """
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetForQuestionAnswering, self).__init__(config)
        self.output_attentions = output_attentions
        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_weights)

1388
    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1389
1390
1391
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                start_positions=None, end_positions=None,
                output_all_encoded_layers=True, head_mask=None):
1392
        output, _, new_mems = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
thomwolf's avatar
thomwolf committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
                                            mems, perm_mask, target_mapping, inp_q,
                                            output_all_encoded_layers, head_mask)

        logits = self.qa_outputs(output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
        elif self.output_attentions:
            return all_attentions, start_logits, end_logits
        return start_logits, end_logits