"vscode:/vscode.git/clone" did not exist on "f03dade5ab8f17a165d63efc205eb34a2330b7d8"
test_tokenization_common.py 130 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import inspect
thomwolf's avatar
thomwolf committed
18
import os
19
import pickle
20
import re
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import shutil
22
import tempfile
23
from collections import OrderedDict
24
from itertools import takewhile
25
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
from transformers import PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast, is_torch_available
28
29
30
31
32
33
34
35
from transformers.testing_utils import (
    get_tests_dir,
    is_pt_tf_cross_test,
    require_tf,
    require_tokenizers,
    require_torch,
    slow,
)
Anthony MOI's avatar
Anthony MOI committed
36
from transformers.tokenization_utils import AddedToken
37

38

39
if TYPE_CHECKING:
40
    from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel
41
42


43
44
45
46
47
48
49
50
51
52
53
54
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]


def filter_non_english(_, pretrained_name: str):
    """ Filter all the model for non-english language """
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])


def filter_roberta_detectors(_, pretrained_name: str):
    return "detector" not in pretrained_name


55
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
56
57
58
59
60
61
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
        model = model_mapping[configuration]
        tokenizer = tokenizer_mapping[configuration][0]
        tokenizer_fast = tokenizer_mapping[configuration][1]

        model_tokenizer_mapping.update({tokenizer: (configuration, model)})
        if tokenizer_fast is not None:
            model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})

    return model_tokenizer_mapping


77
class TokenizerTesterMixin:
78

79
    tokenizer_class = None
80
    rust_tokenizer_class = None
Anthony MOI's avatar
Anthony MOI committed
81
    test_rust_tokenizer = False
82
    space_between_special_tokens = False
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    from_pretrained_kwargs = None
    from_pretrained_filter = None
    from_pretrained_vocab_key = "vocab_file"

    def setUp(self) -> None:
        # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
        # information available in Tokenizer (name, rust class, python class, vocab key name)
        if self.test_rust_tokenizer:
            tokenizers_list = [
                (
                    self.rust_tokenizer_class,
                    pretrained_name,
                    self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {},
                )
                for pretrained_name in self.rust_tokenizer_class.pretrained_vocab_files_map[
                    self.from_pretrained_vocab_key
                ].keys()
                if self.from_pretrained_filter is None
                or (self.from_pretrained_filter is not None and self.from_pretrained_filter(pretrained_name))
            ]
            self.tokenizers_list = tokenizers_list[:1]  # Let's just test the first pretrained vocab for speed
        else:
            self.tokenizers_list = []
        with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
108

109
        self.tmpdirname = tempfile.mkdtemp()
110

111
112
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
113

114
115
116
117
    def get_input_output_texts(self, tokenizer):
        input_txt = self.get_clean_sequence(tokenizer)[0]
        return input_txt, input_txt

118
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
119
120
121
122
123
        toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
124
125
126
        if min_length is not None and len(toks) < min_length and len(toks) > 0:
            while len(toks) < min_length:
                toks = toks + toks
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

143
    def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]:
144
145
146
147
        if fast and self.test_rust_tokenizer:
            return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
        return [self.get_tokenizer(**kwargs)]

148
149
    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
150

151
    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
152
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
153

154
155
156
157
158
159
160
    # def get_input_output_texts(self) -> Tuple[str, str]:
    #     """Feel free to overwrite"""
    #     # TODO: @property
    #     return (
    #         "This is a test",
    #         "This is a test",
    #     )
thomwolf's avatar
thomwolf committed
161

162
163
164
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
165
        # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
166
167
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
168
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
169
170
        ]

171
172
173
174
175
176
177
178
179
    def test_rust_tokenizer_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)

        self.assertIn("tokenizer_file", signature.parameters)
        self.assertIsNone(signature.parameters["tokenizer_file"].default)

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def test_tokenizer_slow_store_full_signature(self):
        signature = inspect.signature(self.tokenizer_class.__init__)
        tokenizer = self.get_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)

    def test_tokenizer_fast_store_full_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)
        tokenizer = self.get_rust_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence, _ = self.get_input_output_texts(tokenizer)

        # We don't have an exact equivalence on `tokenize()` between Rust and Slow
        # Slow tokenizer only split tokens, Rust tokenizers will replace with <unk>
        # tokens = tokenizer.tokenize(sequence)
        # rust_tokens = rust_tokenizer.tokenize(sequence)
        # self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        ids = tokenizer.encode(sequence, add_special_tokens=True)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True)
        self.assertListEqual(ids, rust_ids)

222
    def test_tokenizers_common_properties(self):
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
                    self.assertTrue(hasattr(tokenizer, attr + "_id"))

                self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
                self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))

                attributes_list = [
                    "model_max_length",
                    "init_inputs",
                    "init_kwargs",
                ]
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    attributes_list += [
                        "added_tokens_encoder",
                        "added_tokens_decoder",
                    ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
254

255
256
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
257
        tokenizers = self.get_tokenizers()
258
259
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
Stas Bekman's avatar
Stas Bekman committed
260
                self.assertNotEqual(tokenizer.model_max_length, 42)
261

262
        # Now let's start the test
263
        tokenizers = self.get_tokenizers()
264
265
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
266
267
268
269
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
270
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
271
272
273
274
275
276
277
278
279
280
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)
296

297
298
299
                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
300
                self.assertListEqual(before_tokens, after_tokens)
301
302
303
304
305
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)
306

307
                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
308
                self.assertEqual(tokenizer.model_max_length, 43)
309

310
311
                shutil.rmtree(tmpdirname)

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        # Test that we can also use the non-legacy saving format for fast tokenizers
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

345
    def test_pickle_tokenizer(self):
346
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
347
348
349
350
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertIsNotNone(tokenizer)
351

352
353
                text = "Munich and Berlin are nice cities"
                subwords = tokenizer.tokenize(text)
354

355
356
357
                filename = os.path.join(self.tmpdirname, "tokenizer.bin")
                with open(filename, "wb") as handle:
                    pickle.dump(tokenizer, handle)
358

359
360
                with open(filename, "rb") as handle:
                    tokenizer_new = pickle.load(handle)
361

362
                subwords_loaded = tokenizer_new.tokenize(text)
363

364
                self.assertListEqual(subwords, subwords_loaded)
365

366
    @require_tokenizers
Anthony MOI's avatar
Anthony MOI committed
367
368
369
370
371
372
    def test_pickle_added_tokens(self):
        tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True)
        tok2 = pickle.loads(pickle.dumps(tok1))

        self.assertEqual(tok1.__getstate__(), tok2.__getstate__())

373
    def test_added_tokens_do_lower_case(self):
374
375
376
377
        # TODO(thom) activate fast tokenizer tests once Rust tokenizers accepts white spaces in added tokens
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
378
379
380
                if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
                    continue

381
                special_token = tokenizer.all_special_tokens[0]
382

383
384
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
385

386
                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
387

388
389
390
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens(new_toks)
                self.assertEqual(added, 2)
391

392
393
                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)
394

395
396
397
398
399
400
                self.assertEqual(len(toks), len(toks2))
                self.assertListEqual(toks, toks2)
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    # Python tokenizers can have added tokens with spaces inside them
                    # cf https://github.com/huggingface/tokenizers/issues/302
                    self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
401

402
403
404
                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
                tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
405

406
407
                for special_token in tokenizer.all_special_tokens:
                    self.assertTrue(special_token in tokenized_sequence)
408

409
410
411
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
412
413
414
                if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
                    continue

415
                special_token = tokenizer.all_special_tokens[0]
416

417
418
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
419

420
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
421

422
                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
thomwolf's avatar
thomwolf committed
423

424
                added = tokenizer.add_tokens(new_toks)
425
                self.assertIn(added, [2, 4])
426

427
428
                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)
429

430
431
432
433
434
435
                self.assertEqual(len(toks), len(toks2))  # Length should still be the same
                self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    # Python tokenizers can have added tokens with spaces inside them
                    # cf https://github.com/huggingface/tokenizers/issues/302
                    self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
436

437
438
439
440
441
442
443
444
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)
445
446
447
448

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)
487

488
    def test_add_special_tokens(self):
489
490
491
492
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)
493

494
                special_token = "[SPECIAL_TOKEN]"
495

496
497
498
                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)
499

500
501
                text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
                encoded = tokenizer.encode(text, add_special_tokens=False)
502

503
504
505
                input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
                special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(encoded, input_encoded + special_token_id)
506

507
508
                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)
509

510
    def test_internal_consistency(self):
511
512
513
514
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, output_text = self.get_input_output_texts(tokenizer)
515

516
517
518
519
                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
                self.assertListEqual(ids, ids_2)
520

521
522
523
524
                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)
525

526
                self.assertEqual(text_2, output_text)
527

528
    @require_tokenizers
529
    def test_encode_decode_with_spaces(self):
530
531
532
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
LysandreJik's avatar
LysandreJik committed
533

534
535
                # new_toks = ["[ABC]", "[DEF]"]  # TODO(thom) add this one back when Rust toks are ready: , "GHI IHG"]
                new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
536
                tokenizer.add_tokens(new_toks)
537
538
539
540
541
                input = "[ABC][DEF][ABC][DEF]"  # TODO(thom) add back cf above: "[ABC] [DEF] [ABC] GHI IHG [DEF]"
                if self.space_between_special_tokens:
                    output = "[ABC] [DEF] [ABC] [DEF]"
                else:
                    output = input
542
                encoded = tokenizer.encode(input, add_special_tokens=False)
543
544
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
                self.assertIn(decoded, [output, output.lower()])
545

546
    def test_pretrained_model_lists(self):
547
548
549
550
551
552
553
554
555
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)
        self.assertEqual(
            len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]),
            len(self.tokenizer_class.max_model_input_sizes),
        )

556
557
558
559
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
560

561
562
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
563

564
    def test_mask_output(self):
565
566
567
568
569
570
571
572
573
574
575
576
577
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

                if (
                    tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
                    and "token_type_ids" in tokenizer.model_input_names
                ):
                    seq_0 = "Test this method."
                    seq_1 = "With these inputs."
                    information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
                    sequences, mask = information["input_ids"], information["token_type_ids"]
                    self.assertEqual(len(sequences), len(mask))
578
579

    def test_number_of_added_tokens(self):
580
581
582
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
583

584
585
                seq_0 = "Test this method."
                seq_1 = "With these inputs."
586

587
                sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
588
                attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
589

590
591
592
593
594
                # Method is implemented (e.g. not GPT-2)
                if len(attached_sequences) != 2:
                    self.assertEqual(
                        tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
                    )
595
596

    def test_maximum_encoding_length_single_input(self):
597
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
598
599
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
600
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
601
602
603

                sequence = tokenizer.encode(seq_0, add_special_tokens=False)
                total_length = len(sequence)
604

605
                assert total_length > 4, "Issue with the testing sequence, please update it it's too short"
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_1 = seq_0 * model_max_length

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                assert (
                    total_length1 > model_max_length
                ), "Issue with the testing sequence, please update it it's too short"

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
                    with self.subTest(f"Padding: {padding_state}"):
                        for truncation_state in [True, "longest_first", "only_first"]:
                            with self.subTest(f"Truncation: {truncation_state}"):
                                output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
                        output = tokenizer(seq_1, padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"][0]), model_max_length)

                # Overflowing tokens
                stride = 2
                information = tokenizer(
642
643
644
645
646
647
                    seq_0,
                    max_length=total_length - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
648
                    # add_prefix_space=False,
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]
665

666
667
                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])
668

669
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
670

671
    def test_maximum_encoding_length_pair_input(self):
672
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
673
674
675
676
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Build a sequence from our model's vocabulary
                stride = 2
677
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
678
                if len(ids) <= 2 + stride:
679
680
                    seq_0 = (seq_0 + " ") * (2 + stride)
                    ids = None
681
682
683
684
685
686

                seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
                assert len(seq0_tokens) > 2 + stride

                seq_1 = "This is another sentence to be encoded."
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
687
                if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2:
688
689
690
691
692
693
694
695
696
697
                    seq1_tokens = seq1_tokens + seq1_tokens
                    seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False)
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

                assert len(seq1_tokens) > 2 + stride

                smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens

                # We are not using the special tokens - a bit too hard to test all the tokenizers with this
                # TODO try this again later
698
                sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)  # , add_prefix_space=False)
699
700
701
702
703

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_2 = seq_0 * model_max_length
704
                assert len(seq_2) > model_max_length
705
706
707
708
709
710
711
712
713
714
715
716
717

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False)
                total_length2 = len(sequence2["input_ids"])
                assert total_length1 < model_max_length - 10, "Issue with the testing sequence, please update it."
                assert total_length2 > model_max_length, "Issue with the testing sequence, please update it."

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
718
                    with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"):
719
                        for truncation_state in [True, "longest_first", "only_first"]:
720
                            with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"):
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
                                output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer(
                                    [seq_2], [seq_1], padding=padding_state, truncation=truncation_state
                                )
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"][0]), model_max_length)

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
                truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode(
                    seq_1, add_special_tokens=False
                )
                truncated_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[:-2]
                )
                truncated_longest_sequence = (
                    truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence
                )

                overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[
                    -(2 + stride) :
                ] + tokenizer.encode(seq_1, add_special_tokens=False)
                overflow_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :]
                )
                overflow_longest_sequence = (
                    overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence
                )

                information = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
773
                    # add_prefix_space=False,
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(
794
                        len(overflowing_tokens), 2 + stride
795
796
                    )  # No overflowing tokens when using 'longest' in python tokenizers

797
                information = tokenizer.encode_plus(
798
799
800
801
802
803
804
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation=True,
                    return_overflowing_tokens=True,
805
                    # add_prefix_space=False,
806
807
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(
                        len(overflowing_tokens), 2 + stride
                    )  # No overflowing tokens when using 'longest' in python tokenizers

                information_first_truncated = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_first",
                    return_overflowing_tokens=True,
                    # add_prefix_space=False,
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_first_truncated["input_ids"][0]
                    overflowing_tokens = information_first_truncated["input_ids"][1]
                    self.assertEqual(len(information_first_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens))
                    self.assertEqual(overflowing_tokens, overflow_first_sequence)
                else:
                    truncated_sequence = information_first_truncated["input_ids"]
                    overflowing_tokens = information_first_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :])

                information_second_truncated = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_second",
                    return_overflowing_tokens=True,
868
                    # add_prefix_space=False,
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_second_truncated["input_ids"][0]
                    overflowing_tokens = information_second_truncated["input_ids"][1]
                    self.assertEqual(len(information_second_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens))
                    self.assertEqual(overflowing_tokens, overflow_second_sequence)
                else:
                    truncated_sequence = information_second_truncated["input_ids"]
                    overflowing_tokens = information_second_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)
887

888
889
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :])
890

891
892
893
894
895
    # def test_encode_input_type(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             sequence = "Let's encode this sequence"
896

897
898
899
    #             tokens = sequence.split()  # tokenizer.tokenize(sequence)
    #             # input_ids = tokenizer.convert_tokens_to_ids(tokens)
    #             formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
900

901
    #             self.assertEqual(
902
    #                 tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input
903
904
905
    #             )
    #             # This is not supported with the Rust tokenizers
    #             # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
906

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
    # def test_swap_special_token(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             # Our mask token
    #             mask = "<mask>"
    #             # We take a single word in the middle of the vocabulary
    #             all_tokens = sorted(tokenizer.get_vocab().keys())
    #             word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1])

    #             sequence_0 = "Encode " + word + " sequence"
    #             sequence_masked_0 = "Encode " + mask + " sequence"

    #             sequence_1 = word + " this sequence"
    #             sequence_masked_1 = mask + " this sequence"

    #             # Add tokens so that masked token isn't split
    #             # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()]
    #             # tokenizer.add_tokens(tokens)
    #             tokenizer.add_special_tokens(
    #                 {"mask_token": AddedToken(mask, normalized=False)}
    #             )  # Eat left space on Byte-level BPE tokenizers
    #             mask_ind = tokenizer.convert_tokens_to_ids(mask)

    #             # Test first masked sequence
    #             encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
    #             assert len(encoded_masked) == len(encoded_0)
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_0[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_0)

    #             # Test second masked sequence
    #             encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
    #             assert len(encoded_masked) == len(encoded_1)
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_1[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_1)
948

949
    def test_special_tokens_mask(self):
950
951
952
953
954
955
956
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                # Testing single inputs
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
957
                    sequence_0, add_special_tokens=True, return_special_tokens_mask=True  # , add_prefix_space=False
958
959
960
961
962
963
964
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
                self.assertEqual(encoded_sequence, filtered_sequence)
965

966
    def test_special_tokens_mask_input_pairs(self):
967
968
969
970
971
972
973
974
975
976
977
978
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
979
                    # add_prefix_space=False,
980
981
982
983
984
985
986
987
988
989
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)
990

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    def test_right_and_left_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "left"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, padding=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding="longest")
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding=False)
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left
1052
1053

    def test_padding_to_max_length(self):
Lysandre's avatar
Lysandre committed
1054
        """We keep this test for backward compatibility but it should be remove when `pad_to_max_length` will e deprecated"""
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
1070
                # FIXME: the next line should be padding(max_length) to avoid warning
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, pad_to_max_length=True
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # Check that nothing is done when a maximum length is not specified
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right
1087

1088
1089
1090
    def test_padding_to_multiple_of(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
1091
1092
1093
1094
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                else:
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
                    empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
                    normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
                    for key, value in empty_tokens.items():
                        self.assertEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))
                    for key, value in normal_tokens.items():
                        self.assertEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))

                    normal_tokens = tokenizer("This", pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
                        self.assertNotEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))

                    # Should also work with truncation
                    normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
                        self.assertEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))

                    # truncation to something which is not a multiple of pad_to_multiple_of raises an error
                    self.assertRaises(
                        ValueError,
                        tokenizer.__call__,
                        "This",
                        padding=True,
                        truncation=True,
                        max_length=12,
                        pad_to_multiple_of=8,
                    )

1122
    def test_encode_plus_with_padding(self):
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_size = 10
                padding_idx = tokenizer.pad_token_id
                token_type_padding_idx = tokenizer.pad_token_type_id

                encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
                input_ids = encoded_sequence["input_ids"]
                special_tokens_mask = encoded_sequence["special_tokens_mask"]
                sequence_length = len(input_ids)

                # Test 'longest' and 'no_padding' don't do anything
                tokenizer.padding_side = "right"

Lysandre's avatar
Lysandre committed
1143
1144
1145
1146
1147
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=True,
                    return_special_tokens_mask=True,
                )
1148
1149
1150
1151
1152
1153
1154
1155
1156
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

Lysandre's avatar
Lysandre committed
1157
1158
1159
1160
1161
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=False,
                    return_special_tokens_mask=True,
                )
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

                # Test right padding
                tokenizer.padding_side = "right"

                right_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                right_padded_input_ids = right_padded_sequence["input_ids"]

                right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
                right_padded_sequence_length = len(right_padded_input_ids)

                assert sequence_length + padding_size == right_padded_sequence_length
                assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
                assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask

                # Test left padding
                tokenizer.padding_side = "left"
                left_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                left_padded_input_ids = left_padded_sequence["input_ids"]
                left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
                left_padded_sequence_length = len(left_padded_input_ids)

                assert sequence_length + padding_size == left_padded_sequence_length
                assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
                assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

                if "token_type_ids" in tokenizer.model_input_names:
                    token_type_ids = encoded_sequence["token_type_ids"]
                    left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
                    right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

                    assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids
                    assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids

                if "attention_mask" in tokenizer.model_input_names:
                    attention_mask = encoded_sequence["attention_mask"]
                    right_padded_attention_mask = right_padded_sequence["attention_mask"]
                    left_padded_attention_mask = left_padded_sequence["attention_mask"]

                    assert attention_mask + [0] * padding_size == right_padded_attention_mask
                    assert [0] * padding_size + attention_mask == left_padded_attention_mask
1220
1221
1222
1223
1224
1225

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

        tokenizer = self.get_tokenizer(random_argument=True)
Lysandre's avatar
Style  
Lysandre committed
1226
        assert tokenizer.init_kwargs["random_argument"] is True
1227
        new_tokenizer = self.get_tokenizer(random_argument=False)
Lysandre's avatar
Style  
Lysandre committed
1228
1229
        assert tokenizer.init_kwargs["random_argument"] is True
        assert new_tokenizer.init_kwargs["random_argument"] is False
1230
1231

    def test_get_vocab(self):
1232
1233
1234
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1235
1236
1237
                vocab_dict = tokenizer.get_vocab()
                self.assertIsInstance(vocab_dict, dict)
                self.assertGreaterEqual(len(tokenizer), len(vocab_dict))
1238

1239
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
1240
                self.assertEqual(len(vocab), len(tokenizer))
1241

1242
                tokenizer.add_tokens(["asdfasdfasdfasdf"])
1243
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
1244
                self.assertEqual(len(vocab), len(tokenizer))
1245

1246
    def test_conversion_reversible(self):
1247
1248
1249
1250
1251
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()
                for word, ind in vocab.items():
1252
1253
                    if word == tokenizer.unk_token:
                        continue
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
                    self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
                    self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # Test not batched
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0])
                encoded_sequences_2 = tokenizer(sequences[0])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test not batched pairs
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1])
                encoded_sequences_2 = tokenizer(sequences[0], sequences[1])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched
                encoded_sequences_1 = tokenizer.batch_encode_plus(sequences)
                encoded_sequences_2 = tokenizer(sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched pairs
                encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences)))
                encoded_sequences_2 = tokenizer(sequences, sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)
1287
1288
1289

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences]
                encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False)
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

                maximum_length = len(
                    max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
                )

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences_padded = [
                    tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length")
                    for sequence in sequences
                ]

                encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True)
                self.assertListEqual(
                    encoded_sequences_padded,
                    self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
                )

                # check 'longest' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding="longest"
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
1330
1331
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
1332
1333
1334
1335
1336
1337
1338
1339
1340
                    )

                # check 'no_padding' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding=False
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
1341
1342
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
1343
                    )
1344

1345
    @require_tokenizers
1346
1347
1348
    def test_added_token_serializable(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
1349
1350
1351
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                new_token = AddedToken("new_token", lstrip=True)
                tokenizer.add_special_tokens({"additional_special_tokens": [new_token]})
1352

1353
1354
1355
                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    tokenizer.save_pretrained(tmp_dir_name)
                    tokenizer.from_pretrained(tmp_dir_name)
1356

1357
1358
1359
1360
    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )
1385
1386

        # Left padding tests
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.padding_side = "left"
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

    def test_pretokenized_inputs(self):
        # Test when inputs are pretokenized

1416
        tokenizers = self.get_tokenizers(do_lower_case=False)  # , add_prefix_space=True)
1417
1418
1419
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

1420
1421
1422
                if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space:
                    continue

1423
1424
1425
1426
1427
1428
1429
                # Prepare a sequence from our tokenizer vocabulary
                sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20)
                # sequence = " " + sequence  # To be sure the byte-level tokenizers are feeling good
                token_sequence = sequence.split()
                # sequence_no_prefix_space = sequence.strip()

                # Test encode for pretokenized inputs
1430
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False)
1431
1432
1433
                output_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)

1434
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True)
1435
1436
1437
1438
                output_sequence = tokenizer.encode(sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs
1439
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False)
1440
1441
1442
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
1443
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True)
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs
                sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()]
                token_sequence_batch = [s.split() for s in sequence_batch]
                sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch]

                output = tokenizer.batch_encode_plus(
1454
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=False
1455
1456
1457
1458
1459
1460
1461
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
1462
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=True
1463
1464
1465
1466
1467
1468
1469
1470
1471
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test encode for pretokenized inputs pairs
                output = tokenizer.encode(
1472
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
1473
1474
1475
1476
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)
                output = tokenizer.encode(
1477
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
1478
1479
1480
1481
1482
1483
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs pairs
                output = tokenizer.encode_plus(
1484
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
1485
1486
1487
1488
1489
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.encode_plus(
1490
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs pairs
                sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [
                    (sequence.strip() + " " + sequence.strip(), sequence.strip())
                ]
                token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch]
                sequence_pair_batch_cleaned_up_spaces = [
                    tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch
                ]

                output = tokenizer.batch_encode_plus(
1506
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False
1507
1508
1509
1510
1511
1512
1513
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
1514
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True
1515
1516
1517
1518
1519
1520
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
1521

1522
1523
1524
    def test_prepare_for_model(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
1525
1526
1527
1528
1529
1530
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                string_sequence = "Testing the prepare_for_model method."
                ids = tokenizer.encode(string_sequence, add_special_tokens=False)
                prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True)

                input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True)
1531

1532
                self.assertEqual(input_dict, prepared_input_dict)
1533

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
    def test_batch_encode_plus_overflowing_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            string_sequences = ["Testing the prepare_for_model method.", "Test"]

            if tokenizer.pad_token is None:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

            tokenizer.batch_encode_plus(
                string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
            )

1546
    @is_pt_tf_cross_test
1547
    def test_batch_encode_plus_tensors(self):
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # A Tensor cannot be build by sequences which are not the same size
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

                if tokenizer.pad_token_id is None:
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
1563
1564
1565
1566
1567
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding=True,
                        return_tensors="pt",
1568
1569
                    )
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
1570
1571
1572
1573
1574
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding="longest",
                        return_tensors="tf",
1575
1576
1577
1578
1579
                    )
                else:
                    pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt")
                    tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf")
                    encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True)
1580

1581
1582
1583
1584
                    for key in encoded_sequences.keys():
                        pytorch_value = pytorch_tensor[key].tolist()
                        tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                        encoded_value = encoded_sequences[key]
1585

1586
                        self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
1587
1588
1589
1590
1591
1592

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
1593
                    tokenizer.batch_encode_plus(sequences, padding="longest")
1594
                else:
1595
                    tokenizer.encode_plus(sequences, padding=True)
1596
1597
1598

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
1599
1600

    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
1601
    @slow
1602
    def test_torch_encode_plus_sent_to_model(self):
1603
        import torch
1604

1605
1606
1607
1608
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

1609
1610
1611
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1612

1613
1614
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
1615

1616
1617
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
1618

1619
1620
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
1621

1622
                model = model_class(config)
1623

1624
1625
1626
1627
1628
1629
1630
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
                assert (
                    (model.get_input_embeddings().weight.shape[0] >= len(tokenizer))
                    if is_using_common_embeddings
                    else True
                )
1631

1632
1633
1634
1635
1636
1637
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
                # This should not fail
1638

1639
1640
1641
                with torch.no_grad():  # saves some time
                    model(**encoded_sequence)
                    model(**batch_encoded_sequence)
1642

1643
1644
1645
1646
1647
1648
1649
        # if self.test_rust_tokenizer:
        #     fast_tokenizer = self.get_rust_tokenizer()
        #     encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
        #     batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        #     # This should not fail
        #     model(**encoded_sequence_fast)
        #     model(**batch_encoded_sequence_fast)
1650
1651

    @require_tf
Sylvain Gugger's avatar
Sylvain Gugger committed
1652
    @slow
1653
1654
1655
1656
1657
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

1658
1659
1660
1661
1662
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
1663

1664
1665
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
1666

1667
1668
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
1669

1670
                model = model_class(config)
1671

1672
1673
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                assert model.config.vocab_size >= len(tokenizer)
1674

1675
1676
1677
1678
1679
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
1680

1681
1682
1683
                # This should not fail
                model(encoded_sequence)
                model(batch_encoded_sequence)
1684
1685
1686

    # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
1687
    @slow
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
    def test_np_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()
        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

        # TODO: add forward through JAX/Flax when PR is merged
        # This is currently here to make flake8 happy !
        if encoded_sequence is None:
            raise ValueError("Cannot convert list to numpy tensor on  encode_plus()")

        if batch_encoded_sequence is None:
            raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus()")

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

            # TODO: add forward through JAX/Flax when PR is merged
            # This is currently here to make flake8 happy !
            if encoded_sequence_fast is None:
                raise ValueError("Cannot convert list to numpy tensor on  encode_plus() (fast)")

            if batch_encoded_sequence_fast is None:
                raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus() (fast)")
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746

    @require_torch
    def test_prepare_seq2seq_batch(self):
        tokenizer = self.get_tokenizer()

        if not hasattr(tokenizer, "prepare_seq2seq_batch"):
            return
        # Longer text that will definitely require truncation.
        src_text = [
            " UN Chief Says There Is No Military Solution in Syria",
            " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
        ]
        tgt_text = [
            "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
            "Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei "
            'pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu '
            "vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.",
        ]
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
        try:
            batch = tokenizer.prepare_seq2seq_batch(
                src_texts=src_text,
                tgt_texts=tgt_text,
                max_length=3,
                max_target_length=10,
                return_tensors="pt",
                src_lang="en_XX",  # this should be ignored (for all but mbart) but not cause an error
            )
        except NotImplementedError:
            return
1758
        self.assertEqual(batch.input_ids.shape[1], 3)
1759
        self.assertEqual(batch.labels.shape[1], 10)
1760
1761
1762
        # max_target_length will default to max_length if not specified
        batch = tokenizer.prepare_seq2seq_batch(src_text, tgt_texts=tgt_text, max_length=3)
        self.assertEqual(batch.input_ids.shape[1], 3)
1763
        self.assertEqual(batch.labels.shape[1], 3)
1764
1765
1766
1767
1768
1769
1770

        batch_encoder_only = tokenizer.prepare_seq2seq_batch(
            src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
        )
        self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
        self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
        self.assertNotIn("decoder_input_ids", batch_encoder_only)
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539

    def test_is_fast(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check is_fast is set correctly
                self.assertFalse(tokenizer_p.is_fast)
                self.assertTrue(tokenizer_r.is_fast)

    def test_fast_only_inputs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure None raise an error
                self.assertRaises(TypeError, tokenizer_r.tokenize, None)
                self.assertRaises(TypeError, tokenizer_r.encode, None)
                self.assertRaises(TypeError, tokenizer_r.encode_plus, None)
                self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None)

    def test_alignement_methods(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                batch_size = 3

                encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

                batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # words, tokens
                self.assertEqual(len(encoding.words(0)), num_tokens)
                self.assertEqual(max(encoding.words(0)), last_word_index)
                self.assertEqual(min(encoding.words(0)), 0)
                self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
                self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
                self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
                self.assertEqual(len(encoding.tokens(0)), num_tokens)

                # Assert token_to_word
                self.assertEqual(encoding.token_to_word(0), 0)
                self.assertEqual(encoding.token_to_word(0, 0), 0)
                self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
                self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

                # Assert word_to_tokens
                self.assertEqual(encoding.word_to_tokens(0).start, 0)
                self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
                self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
                self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1
                )

                # Assert token_to_chars
                self.assertEqual(encoding.token_to_chars(0).start, 0)
                self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
                self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1
                )

                # Assert char_to_token
                self.assertEqual(encoding.char_to_token(0), 0)
                self.assertEqual(encoding.char_to_token(0, 0), 0)
                self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
                self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

                # Assert char_to_word
                self.assertEqual(encoding.char_to_word(0), 0)
                self.assertEqual(encoding.char_to_word(0, 0), 0)
                self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
                self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

                # Assert word_to_chars
                self.assertEqual(encoding.word_to_chars(0).start, 0)
                self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
                self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1
                )

    def test_tokenization_python_rust_equals(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure basic input match
                input_p = tokenizer_p.encode_plus(self._data)
                input_r = tokenizer_r.encode_plus(self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
                input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])

                # Ensure truncation match
                input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
                input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                # Ensure truncation with stride match
                input_p = tokenizer_p.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )
                input_r = tokenizer_r.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key][0])

    def test_num_special_tokens_to_add_equal(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the same number of added_tokens for both pair and non-pair inputs.
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False)
                )
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True)
                )

    def test_max_length_equal(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the correct max_length for both pair and non-pair inputs.
                self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
                self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def test_special_tokens_map_equal(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Assert the set of special tokens match.
                self.assertSequenceEqual(
                    tokenizer_p.special_tokens_map.items(),
                    tokenizer_r.special_tokens_map.items(),
                )

    def test_add_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                vocab_size = len(tokenizer_r)
                self.assertEqual(tokenizer_r.add_tokens(""), 0)
                self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
                self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
                self.assertEqual(len(tokenizer_r), vocab_size + 3)

                self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
                self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
                self.assertRaises(
                    AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
                )
                self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
                self.assertEqual(
                    tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
                )
                self.assertEqual(len(tokenizer_r), vocab_size + 8)

    def test_offsets_mapping(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                text = "Wonderful no inspiration example with subtoken"
                pair = "Along with an awesome pair"

                # No pair
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(False)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

                # Pairs
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(True)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def test_batch_encode_dynamic_overflowing(self):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

            with self.subTest(
                "{} ({}, {})".format(tokenizer.__class__.__name__, pretrained_name, tokenizer.__class__.__name__)
            ):

                returned_tensor = "pt" if is_torch_available() else "tf"

                if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
                    return

                tokens = tokenizer.encode_plus(
                    "HuggingFace is solving NLP one commit at a time",
                    max_length=6,
                    padding=True,
                    truncation=True,
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)

                # Mono sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

                # Multi sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

    def test_compare_pretokenized_inputs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space:
                    continue  # Too hard to test for now

                # Input string
                pretokenized_input_simple = "This is a sample input".split()
                pretokenized_input_pair = "This is a sample pair".split()

                # Test encode for pretokenized inputs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                self.assertEqual(output_p, output_r)

                kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                batch_kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
                output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test encode for pretokenized inputs pairs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                self.assertEqual(output_p, output_r)

                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
                    pretokenized_input_simple + pretokenized_input_pair,
                    pretokenized_input_pair,
                ]
                output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

    def test_create_token_type_ids(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                input_simple = [1, 2, 3]
                input_pair = [1, 2, 3]

                # Generate output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_build_inputs_with_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # # Input string
                # input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False)
                # input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False)

                # # Generate output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                # self.assertEqual(output_p, output_r)

                # # Generate pair output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                # self.assertEqual(output_p, output_r)

                # Input tokens id
                input_simple = tokenizer_p.encode("This is a sample input", add_special_tokens=False)
                input_pair = tokenizer_p.encode("This is a sample pair", add_special_tokens=False)

                # Generate output
                output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_padding(self, max_length=50):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                def assert_padded_input_match(input_r: list, input_p: list, max_length: int):

                    # Ensure we match max_length
                    self.assertEqual(len(input_r), max_length)
                    self.assertEqual(len(input_p), max_length)

                    # Ensure the number of padded tokens is the same
                    padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r)))
                    padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p)))
                    self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)

                def assert_batch_padded_input_match(input_r: dict, input_p: dict, max_length: int):
                    for i_r in input_r.values():
                        self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                            len(i_r[1]), max_length
                        )
                        self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                            len(i_r[1]), max_length
                        )

                    for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]):
                        assert_padded_input_match(i_r, i_p, max_length)

                    for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
                        self.assertSequenceEqual(i_r, i_p)

                # Encode - Simple input
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
                assert_padded_input_match(input_r, input_p, max_length)
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
                assert_padded_input_match(input_r, input_p, max_length)

                input_r = tokenizer_r.encode("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode("This is a simple input", padding=True)
                assert_padded_input_match(input_r, input_p, len(input_r))

                # Encode - Pair input
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                assert_padded_input_match(input_r, input_p, max_length)
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                assert_padded_input_match(input_r, input_p, max_length)
                input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
                input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
                assert_padded_input_match(input_r, input_p, len(input_r))

                # Encode_plus - Simple input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))

                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Encode_plus - Pair input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Batch_encode_plus - Simple input
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
                assert_batch_padded_input_match(input_r, input_p, max_length)

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
                assert_batch_padded_input_match(input_r, input_p, max_length)

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="longest",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding=True,
                )
                assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding="longest"
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding=True
                )
                assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

                # Batch_encode_plus - Pair input
                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
                assert_batch_padded_input_match(input_r, input_p, max_length)

                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding="longest",
                )
                assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r)

                input_p = tokenizer_r.encode_plus("This is a input 1")
                input_p = tokenizer_r.pad(input_p)

                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

                input_p = tokenizer_r.encode_plus("This is a input 1")
                input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

                assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r)

                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.pad(input_p)

                assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

                assert_batch_padded_input_match(input_r, input_p, max_length)

    def test_save_pretrained(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

                shutil.rmtree(tmpdirname2)

    def test_embeded_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )
                tokens_p = tokenizer_p.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )

                for key in tokens_p.keys():
                    self.assertEqual(tokens_r[key], tokens_p[key])

                if "token_type_ids" in tokens_r:
                    self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
                self.assertSequenceEqual(tokens_r, tokens_p)

    def test_compare_add_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
                # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

                for text in ["", " "]:
                    # tokenize()
                    no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode()
                    no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode_plus()
                    no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        self.assertEqual(
                            len(no_special_tokens[key]),
                            len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
                        )

                    # # batch_encode_plus
                    no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
                    with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                            self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)

    def test_compare_prepare_for_model(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                string_sequence = "Asserting that both tokenizers are equal"
                python_output = tokenizer_p.prepare_for_model(
                    tokenizer_p.encode(string_sequence, add_special_tokens=False)
                )
                rust_output = tokenizer_r.prepare_for_model(
                    tokenizer_r.encode(string_sequence, add_special_tokens=False)
                )
                for key in python_output:
                    self.assertEqual(python_output[key], rust_output[key])