run_classifier.py 25.7 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
23
import csv
import os
24
25
import logging
import argparse
VictorSanh's avatar
VictorSanh committed
26
import random
thomwolf's avatar
thomwolf committed
27
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
28
29

import numpy as np
VictorSanh's avatar
VictorSanh committed
30
import torch
31
32
33
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

34
from pytorch_pretrained_bert.tokenization import BertTokenizer
thomwolf's avatar
thomwolf committed
35
36
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
37
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
38

39
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
40
41
42
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
94
        with open(input_file, "r", encoding='utf-8') as f:
95
96
97
98
99
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
100
101


VictorSanh's avatar
wip  
VictorSanh committed
102
103
104
105
106
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
107
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
127
128
129
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
130
131
132
133
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
159
            guid = "%s-%s" % (set_type, line[0])
160
161
            text_a = line[8]
            text_b = line[9]
162
            label = line[-1]
163
164
165
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
190
191
            text_a = line[3]
            label = line[1]
192
193
194
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
195
196
197


def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
198
199
    """Loads a data file into a list of `InputBatch`s."""

200
    label_map = {label : i for i, label in enumerate(label_list)}
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
216
                tokens_a = tokens_a[:(max_seq_length - 2)]
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
236
237
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
238
239

        if tokens_b:
240
241
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
242
243
244
245
246
247
248
249

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
250
251
252
253
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
254
255
256
257
258
259
260
261
262
263

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
264
                    [str(x) for x in tokens]))
265
266
267
268
269
270
271
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
272
273
274
275
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
276
    return features
thomwolf's avatar
thomwolf committed
277
278


279
280
281
282
283
284
285
286
287
288
289
290
291
292
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
293
294
            tokens_b.pop()

295
296
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
thomwolf's avatar
thomwolf committed
297
    return np.sum(outputs == labels)
VictorSanh's avatar
WIP  
VictorSanh committed
298

299
300
301
302
def warmup_linear(x, warmup=0.002):
    if x < warmup:
        return x/warmup
    return 1.0 - x
thomwolf's avatar
thomwolf committed
303

304
def main():
305
306
307
308
309
310
311
312
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
313
314
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
315
316
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
317
318
319
320
321
322
323
324
325
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
326
                        help="The output directory where the model predictions and checkpoints will be written.")
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
343
344
345
346
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
376
377
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
378
379
                        default=42,
                        help="random seed for initialization")
380
381
382
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
383
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
384
385
386
387
388
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
389
390
391
392
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
393

394
395
    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
396
397
398
399
400
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
401

402
403
404
405
406
407
    num_labels_task = {
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
    }

thomwolf's avatar
thomwolf committed
408
409
410
411
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
412
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
413
414
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
415
416
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
417
418
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
419

420
421
422
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
423

424
    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
425

VictorSanh's avatar
VictorSanh committed
426
427
428
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
429
430
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
431

VictorSanh's avatar
WIP  
VictorSanh committed
432
433
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
434

435
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
436
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
VictorSanh's avatar
WIP  
VictorSanh committed
437
438
439
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
440

VictorSanh's avatar
WIP  
VictorSanh committed
441
442
443
444
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
445
    num_labels = num_labels_task[task_name]
VictorSanh's avatar
WIP  
VictorSanh committed
446
447
    label_list = processor.get_labels()

thomwolf's avatar
thomwolf committed
448
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
449

VictorSanh's avatar
WIP  
VictorSanh committed
450
451
452
453
454
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
455
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
456

thomwolf's avatar
thomwolf committed
457
    # Prepare model
458
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
459
460
              cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),
              num_labels = num_labels)
thomwolf's avatar
thomwolf committed
461
462
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
463
    model.to(device)
thomwolf's avatar
thomwolf committed
464
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
465
466
467
468
469
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

470
        model = DDP(model)
thomwolf's avatar
thomwolf committed
471
    elif n_gpu > 1:
472
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
473

thomwolf's avatar
thomwolf committed
474
    # Prepare optimizer
475
476
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
477
    optimizer_grouped_parameters = [
478
479
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
480
        ]
481
482
483
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
484
    if args.fp16:
thomwolf's avatar
thomwolf committed
485
486
487
488
489
490
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

491
492
493
494
495
496
497
498
499
500
501
502
503
504
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
thomwolf's avatar
thomwolf committed
505

thomwolf's avatar
thomwolf committed
506
    global_step = 0
Jade Abbott's avatar
Jade Abbott committed
507
    nb_tr_steps = 0
508
    tr_loss = 0
VictorSanh's avatar
WIP  
VictorSanh committed
509
510
511
512
513
514
515
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
516
517
518
519
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
520
521
522
523
524
525
526
527
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
528
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
529
530
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
531
532
533
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
534
                loss = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
535
536
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
537
538
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
539
540
541
542
543
544

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

545
                tr_loss += loss.item()
546
                nb_tr_examples += input_ids.size(0)
547
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
548
                if (step + 1) % args.gradient_accumulation_steps == 0:
549
550
551
552
553
554
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
555
                    global_step += 1
thomwolf's avatar
thomwolf committed
556

557
558
559
    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
560
561
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)
562
563
564

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
565
    model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict, num_labels=num_labels)
566
    model.to(device)
567

568
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
569
570
571
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
VictorSanh's avatar
wip  
VictorSanh committed
572
573
574
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
575
576
577
578
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
579
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
580
581
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
582
583
584
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
585
        eval_loss, eval_accuracy = 0, 0
VictorSanh's avatar
VictorSanh committed
586
        nb_eval_steps, nb_eval_examples = 0, 0
587
588
 
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
589
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
590
            input_mask = input_mask.to(device)
591
            segment_ids = segment_ids.to(device)
592
            label_ids = label_ids.to(device)
593

594
            with torch.no_grad():
595
596
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)
thomwolf's avatar
thomwolf committed
597
598
599

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
600
601
            tmp_eval_accuracy = accuracy(logits, label_ids)

602
            eval_loss += tmp_eval_loss.mean().item()
603
            eval_accuracy += tmp_eval_accuracy
thomwolf's avatar
thomwolf committed
604

VictorSanh's avatar
VictorSanh committed
605
            nb_eval_examples += input_ids.size(0)
606
            nb_eval_steps += 1
VictorSanh's avatar
WIP  
VictorSanh committed
607

608
609
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
610
        loss = tr_loss/nb_tr_steps if args.do_train else None
611
612
613
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
614
                  'loss': loss}
VictorSanh's avatar
WIP  
VictorSanh committed
615
616

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
617
618
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
619
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
620
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
621
                writer.write("%s = %s\n" % (key, str(result[key])))
622

VictorSanh's avatar
WIP  
VictorSanh committed
623
624
if __name__ == "__main__":
    main()