"ts/nni_manager/training_service/common/util.ts" did not exist on "eaf421206d42537f956f46ba2945335d060e21ea"
modeling_xlnet.py 59.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import functional as F
32
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
33

34
from .file_utils import cached_path
35
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
36

thomwolf's avatar
thomwolf committed
37
38
39
40
41
42
43
44
45
46

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
47

48
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
57
58
59
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
60
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
61
62
63
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
64
65
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
66
67
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
68

thomwolf's avatar
thomwolf committed
69
70
71
72
73
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
74
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

118
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
119
120
121
122
123
124
125
126
127
128
129
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
130
    tf_weights = {}
thomwolf's avatar
thomwolf committed
131
132
133
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
134
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
135

136
    # Build TF to PyTorch weights loading map
137
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
138

thomwolf's avatar
thomwolf committed
139
140
    for name, pointer in tf_to_pt_map.items():
        print("Importing {}".format(name))
141
142
143
        if name not in tf_weights:
            print("{} not in tf pre-trained weights, skipping".format(name))
            continue
thomwolf's avatar
thomwolf committed
144
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
145
146
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
147
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
148
            print("Transposing")
thomwolf's avatar
thomwolf committed
149
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
175
176
177
178
    return model


def gelu(x):
179
180
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
181
182
        Also see https://arxiv.org/abs/1606.08415
    """
183
184
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


194
class XLNetConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
195
196
    """Configuration class to store the configuration of a `XLNetModel`.
    """
197
198
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
199
    def __init__(self,
thomwolf's avatar
thomwolf committed
200
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
201
202
203
204
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
205
206
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
207
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
208
209
210

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
221
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
222
                 same_length=False,
thomwolf's avatar
thomwolf committed
223
224
225
226
227
228
                 
                 finetuning_task=None,
                 num_labels=2,
                 summary_type="last",
                 use_proj=True,
                 **kwargs):
thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
235
236
237
238
239
240
241
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
242
            attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
249
250
251
252
253

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
270
            finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
271
        """
thomwolf's avatar
thomwolf committed
272
273
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
274
275
276
277
278
279
280
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
281
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
282
283
284
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
285
286
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
287
288
289
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
290
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
291

thomwolf's avatar
thomwolf committed
292
293
294
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
295
296
297
298
299
300
301
302
303
304
305

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
306

307
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
308
309
310
            self.num_labels = num_labels
            self.summary_type = summary_type
            self.use_proj = use_proj
thomwolf's avatar
thomwolf committed
311
312
313
314
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
thomwolf committed
315
316
317
318
319
320
321
322
323
324
325
326
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
327
328
329
330
331
332

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
333
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
334
335
336
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
337
338
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
339
340
341
342
343
344
345
346
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
347
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
348
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
349
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
350
351
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
352
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
353
354
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
355
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
356

thomwolf's avatar
thomwolf committed
357
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
358
359
360
361
362
363
364
365
366
367
368
369
370
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
371
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
372

thomwolf's avatar
thomwolf committed
373
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
374
375
376
377
378
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
379
380
381
382
383
384
385
386
387
388
389
390
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
        x = x[:, 0:klen, :, :]

        return x

391
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
399
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

418
419
420
421
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
422
423
424
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

425
426
427
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
428
429
430
431
432
433
434
435
436
437
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
438
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
469
470
471
472
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
473
474
475
476
477
478
479
480
481
482
483
484

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
485
486
487
488
489
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
490
491
492
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
493
494
495
496
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
497
498
499

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
500
501
502
503

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
521
522
523
524
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
525
526

            # post processing
thomwolf's avatar
thomwolf committed
527
528
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
529

thomwolf's avatar
thomwolf committed
530
        outputs = [output_h, output_g]
531
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
532
533
            outputs = outputs + [attn_prob]
        return outputs
thomwolf's avatar
thomwolf committed
534
535
536
537

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
538
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
539
540
541
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
542
543
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
544
545
546
547
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
555
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
556
        return output
thomwolf's avatar
thomwolf committed
557
558

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
559
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
560
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
561
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
562
563
564
565
566
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
567
568
569
570
571
572
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
573
        if output_g is not None:
thomwolf's avatar
thomwolf committed
574
575
576
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

577
578
        outputs = [output_h, output_g] + outputs[2:]  # Add again attentions if there are there
        return outputs
thomwolf's avatar
thomwolf committed
579

580
581

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
582
583
584
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
585
586
587
588
589
590
591
    config_class = XLNetConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
592

thomwolf's avatar
thomwolf committed
593
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
594
595
596
597
598
599
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
600
601
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
602
603
604
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
605
606
607
608
609
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
610
611
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
612
613
614


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
615
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
616
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
617
618
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
619

thomwolf's avatar
thomwolf committed
620
621
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
622
623
624
625
626
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
627
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
628

thomwolf's avatar
thomwolf committed
629
630
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
631
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
632
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
633

634
635
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
636
637
638
    def _prune_heads(self, heads_to_prune):
        logger.info("Head pruning is not implemented for XLNet")
        pass
thomwolf's avatar
thomwolf committed
639

thomwolf's avatar
thomwolf committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
677
678
679
680
681
682
683
684
685
686
687
688
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
689
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
690
691
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
        inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
692
693
694
695
696
697
698
699
700
701
702

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
703
704
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
705
706
707
708
709
710

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
711
712
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
713
            else:
thomwolf's avatar
thomwolf committed
714
715
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
716
717
718

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
719
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
720
721
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
722
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
723

thomwolf's avatar
thomwolf committed
724
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
725
726
        return pos_emb

thomwolf's avatar
thomwolf committed
727
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
728
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
thomwolf's avatar
thomwolf committed
729
730
        """
        Args:
thomwolf's avatar
thomwolf committed
731
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
732
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
733
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
734
                0 for real tokens and 1 for padding.
735
736
737
738
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
739
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
740
741
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
742
743
744
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
745
                If None, each position attends to all the others.
746
747
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
748
749
750
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
751
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
767
768
769
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
770
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
771
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
772
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
773
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
774
775
776
777
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
778
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
779
780
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
781
782
783

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
784
785
786
787

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
788
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
789
790
791
792
793
794
795
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
796
797
798
799
800
801
802
803
804
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
805
806
807
808
809
810
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
811
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
812
813
814
815
816
817
818
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
819
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
820
821

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
822
823
824
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
825
826
827
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
828
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
829
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
830
831
832
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
833
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
834
835
            else:
                inp_q_ext = inp_q[:, :, None]
836
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
837
838
839
840
841
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
842
843
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
844
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
845
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
846
847

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
848
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
849
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
850
851
852
853
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
854
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
855
856
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
857
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
858
859
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
860
861
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
862
863
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
864
865
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
866
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
867
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
868
869
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
870
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
871
872
873
874
875

        new_mems = []
        if mems is None:
            mems = [None] * len(self.layer)

876
        attentions = []
877
        hidden_states = []
thomwolf's avatar
thomwolf committed
878
879
880
        for i, layer_module in enumerate(self.layer):
            # cache new mems
            new_mems.append(self.cache_mem(output_h, mems[i]))
881
882
883
884
885
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
886
                                   head_mask=head_mask[i])
887
888
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
889
                attentions.append(outputs[2])
890
891
892

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
893
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
894
895
896

        output = self.dropout(output_g if output_g is not None else output_h)

897
898
899
900
901
902
903
904
905
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
        outputs = [output.permute(1, 0, 2).contiguous(), new_mems]
        if self.output_hidden_states:
            if output_g is not None:
                hidden_states = [h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs]
            else:
                hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]
            outputs.append(hidden_states)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
906
            attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
907
            outputs.append(attentions)
908

909
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
910
911
912


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
913
914
915
916
917
918
919
920
921
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
thomwolf's avatar
thomwolf committed
922
        input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
923
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
924
        input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
925
            0 for real tokens and 1 for padding.
926
927
928
929
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
thomwolf's avatar
thomwolf committed
946
947
948
949
950
951


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
952
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
953
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
954
955
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
956
957
958
959
960
961
962
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
963
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
964
965
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
966
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
967
        n_layer=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
968
969

    model = modeling.XLNetModel(config=config)
970
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
971
972
    ```
    """
thomwolf's avatar
thomwolf committed
973
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
974
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
975
976
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
977

thomwolf's avatar
thomwolf committed
978
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
979
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
980

thomwolf's avatar
thomwolf committed
981
982
        # Tie weights

thomwolf's avatar
thomwolf committed
983
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
984
        self.tie_weights()
thomwolf's avatar
thomwolf committed
985

thomwolf's avatar
thomwolf committed
986
987
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
988
        """
thomwolf's avatar
thomwolf committed
989
        self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
990

thomwolf's avatar
thomwolf committed
991
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
992
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
993
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
994
995
        """
        Args:
thomwolf's avatar
thomwolf committed
996
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
997
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
998
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
999
                0 for real tokens and 1 for padding.
1000
1001
1002
1003
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
1004
1005
1006
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1007
1008
1009
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1010
                If None, each position attends to all the others.
1011
1012
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1013
1014
1015
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1016
            inp_q: float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1017
1018
1019
1020
1021
1022
1023
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
thomwolf's avatar
thomwolf committed
1024
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1025
1026
1027
                                               mems, perm_mask, target_mapping, inp_q, head_mask)

        logits = self.lm_loss(transformer_outputs[0])
1028

1029
        outputs = [logits] + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1030

1031
        if labels is not None:
1032
1033
1034
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1035
                            labels.view(-1))
1036
            outputs = [loss] + outputs
1037

1038
        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
1039

1040
class XLNetSequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
1041
    def __init__(self, config):
1042
        super(XLNetSequenceSummary, self).__init__()
thomwolf's avatar
thomwolf committed
1043
1044
        self.summary_type = config.summary_type
        if config.use_proj:
thomwolf's avatar
thomwolf committed
1045
            self.summary = nn.Linear(config.d_model, config.d_model)
1046
1047
        else:
            self.summary = None
thomwolf's avatar
thomwolf committed
1048
        if config.summary_type == 'attn':
1049
1050
1051
1052
1053
1054
1055
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError
        self.dropout = nn.Dropout(config.dropout)
        self.activation = nn.Tanh()

thomwolf's avatar
thomwolf committed
1056
1057
    def forward(self, hidden_states):
        """ hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
1058
        if self.summary_type == 'last':
thomwolf's avatar
thomwolf committed
1059
            output = hidden_states[:, -1]
1060
        elif self.summary_type == 'first':
thomwolf's avatar
thomwolf committed
1061
            output = hidden_states[:, 0]
1062
        elif self.summary_type == 'mean':
thomwolf's avatar
thomwolf committed
1063
            output = hidden_states.mean(dim=1)
1064
1065
1066
1067
1068
        elif summary_type == 'attn':
            raise NotImplementedError

        output = self.summary(output)
        output = self.activation(output)
thomwolf's avatar
thomwolf committed
1069
        output = self.dropout(output)
1070
1071
        return output

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
thomwolf's avatar
thomwolf committed
1085
        input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1086
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1087
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
1088
            0 for real tokens and 1 for padding.
1089
1090
1091
1092
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
1115
            if labels is None:
1116
1117
1118
1119
1120
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
1121
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
1122
1123
1124
1125
1126

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1127
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
1128
1129
1130
1131
1132
1133
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
1134
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1135
1136
    ```
    """
thomwolf's avatar
thomwolf committed
1137
    def __init__(self, config):
1138
        super(XLNetForSequenceClassification, self).__init__(config)
1139

thomwolf's avatar
thomwolf committed
1140
1141
1142
        self.transformer = XLNetModel(config)
        self.sequence_summary = XLNetSequenceSummary(config)
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1143

thomwolf's avatar
thomwolf committed
1144
        self.apply(self.init_weights)
1145

thomwolf's avatar
thomwolf committed
1146
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1147
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1148
                labels=None, head_mask=None):
1149
1150
        """
        Args:
thomwolf's avatar
thomwolf committed
1151
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1152
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1153
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1154
                0 for real tokens and 1 for padding.
1155
1156
1157
1158
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
thomwolf's avatar
thomwolf committed
1176
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1177
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1178
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1179

1180
        output = self.sequence_summary(output)
1181
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1182

1183
1184
        outputs = [logits] + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it

1185
1186
1187
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1188
                loss_fct = MSELoss()
1189
                loss = loss_fct(logits.view(-1), labels.view(-1))
1190
            else:
1191
1192
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1193
1194
1195
            outputs = [loss] + outputs

        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1196

thomwolf's avatar
thomwolf committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
    """XLNet model for Question Answering (span extraction).
    This module is composed of the XLNet model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1212
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1213
1214
1215
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLNet paper for more details).
1216
1217
1218
1219
1220
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
thomwolf's avatar
thomwolf committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1244
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1245
1246
1247
1248
1249
1250
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLNetForQuestionAnswering(config)
1251
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1252
1253
    ```
    """
thomwolf's avatar
thomwolf committed
1254
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1255
        super(XLNetForQuestionAnswering, self).__init__(config)
1256

thomwolf's avatar
thomwolf committed
1257
1258
1259
        self.transformer = XLNetModel(config)
        self.qa_outputs = nn.Linear(config.d_model, config.num_labels)

thomwolf's avatar
thomwolf committed
1260
1261
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1262
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1263
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1264
                start_positions=None, end_positions=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1265
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1266
                                            mems, perm_mask, target_mapping, inp_q, head_mask)
thomwolf's avatar
thomwolf committed
1267

1268
1269
        logits = self.qa_outputs(transformer_outputs[0])

thomwolf's avatar
thomwolf committed
1270
1271
1272
1273
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1274
1275
        outputs = [start_logits, end_logits] + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it

thomwolf's avatar
thomwolf committed
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1291
1292
1293
            outputs = [total_loss] + outputs

        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)