modeling_bert.py 66.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17
18
19


import logging
thomwolf's avatar
thomwolf committed
20
21
import math
import os
thomwolf's avatar
thomwolf committed
22
23
24

import torch
from torch import nn
25
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
26

27
from .activations import gelu, gelu_new, swish
28
from .configuration_bert import BertConfig
Lysandre's avatar
Lysandre committed
29
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
Aymeric Augustin's avatar
Aymeric Augustin committed
30
31
from .modeling_utils import PreTrainedModel, prune_linear_layer

thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    "bert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
    "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
    "bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin",
    "bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin",
    "bert-base-japanese": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-pytorch_model.bin",
    "bert-base-japanese-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking-pytorch_model.bin",
    "bert-base-japanese-char": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-pytorch_model.bin",
    "bert-base-japanese-char-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking-pytorch_model.bin",
    "bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/pytorch_model.bin",
    "bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/pytorch_model.bin",
57
    "bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/pytorch_model.bin",
58
}
59

Rémi Louf's avatar
Rémi Louf committed
60

61
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
62
    """ Load tf checkpoints in a pytorch model.
63
    """
64
65
66
67
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
68
    except ImportError:
69
70
71
72
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
73
        raise
74
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
75
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
76
77
78
79
80
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
81
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
82
83
84
85
86
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
87
        name = name.split("/")
88
89
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
90
91
92
93
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
thomwolf's avatar
thomwolf committed
94
            logger.info("Skipping {}".format("/".join(name)))
95
96
97
            continue
        pointer = model
        for m_name in name:
98
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
99
                scope_names = re.split(r"_(\d+)", m_name)
100
            else:
101
102
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
103
                pointer = getattr(pointer, "weight")
104
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
105
                pointer = getattr(pointer, "bias")
106
            elif scope_names[0] == "output_weights":
107
                pointer = getattr(pointer, "weight")
108
            elif scope_names[0] == "squad":
109
                pointer = getattr(pointer, "classifier")
110
            else:
111
                try:
112
                    pointer = getattr(pointer, scope_names[0])
113
                except AttributeError:
thomwolf's avatar
thomwolf committed
114
                    logger.info("Skipping {}".format("/".join(name)))
115
                    continue
116
117
            if len(scope_names) >= 2:
                num = int(scope_names[1])
118
                pointer = pointer[num]
119
120
121
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
122
123
124
125
126
127
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
128
        logger.info("Initialize PyTorch weight {}".format(name))
129
130
131
132
        pointer.data = torch.from_numpy(array)
    return model


Diganta Misra's avatar
Diganta Misra committed
133
134
135
136
137
def mish(x):
    return x * torch.tanh(nn.functional.softplus(x))


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
thomwolf's avatar
thomwolf committed
138
139


140
BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
141

Rémi Louf's avatar
Rémi Louf committed
142

thomwolf's avatar
thomwolf committed
143
144
145
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
146

thomwolf's avatar
thomwolf committed
147
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
148
        super().__init__()
149
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
150
151
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
152
153
154

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
155
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
156
157
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

158
159
160
161
162
163
164
165
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]
        device = input_ids.device if input_ids is not None else inputs_embeds.device
thomwolf's avatar
thomwolf committed
166
        if position_ids is None:
167
168
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(input_shape)
thomwolf's avatar
thomwolf committed
169
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
170
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
171

172
173
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
thomwolf's avatar
thomwolf committed
174
175
176
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

177
        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
thomwolf's avatar
thomwolf committed
178
179
180
181
182
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Rémi Louf's avatar
Rémi Louf committed
183
184
class BertSelfAttention(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
185
        super().__init__()
Lysandre Debut's avatar
Lysandre Debut committed
186
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
Rémi Louf's avatar
Rémi Louf committed
187
188
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
189
190
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
Rémi Louf's avatar
Rémi Louf committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

208
209
210
211
212
213
214
215
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
thomwolf's avatar
thomwolf committed
216
        mixed_query_layer = self.query(hidden_states)
217

218
219
220
        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
thomwolf's avatar
thomwolf committed
221
222
223
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
224
            attention_mask = encoder_attention_mask
Rémi Louf's avatar
Rémi Louf committed
225
        else:
thomwolf's avatar
thomwolf committed
226
227
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)
Rémi Louf's avatar
Rémi Louf committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


thomwolf's avatar
thomwolf committed
261
262
class BertSelfOutput(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
263
        super().__init__()
thomwolf's avatar
thomwolf committed
264
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
265
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
266
267
268
269
270
271
272
273
274
275
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
276
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
277
        super().__init__()
thomwolf's avatar
thomwolf committed
278
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
279
        self.output = BertSelfOutput(config)
280
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
281

thomwolf's avatar
thomwolf committed
282
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
283
284
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
285
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
v_sboliu's avatar
v_sboliu committed
286
        heads = set(heads) - self.pruned_heads  # Convert to set and remove already pruned heads
thomwolf's avatar
thomwolf committed
287
        for head in heads:
288
289
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
290
291
292
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
293

thomwolf's avatar
thomwolf committed
294
295
296
297
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
298
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
299
300

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
301
302
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
303
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
304

305
306
307
308
309
310
311
312
313
314
315
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
        self_outputs = self.self(
            hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask
        )
Rémi Louf's avatar
Rémi Louf committed
316
317
318
319
320
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


thomwolf's avatar
thomwolf committed
321
322
class BertIntermediate(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
323
        super().__init__()
thomwolf's avatar
thomwolf committed
324
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
325
        if isinstance(config.hidden_act, str):
thomwolf's avatar
thomwolf committed
326
327
328
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334
335
336
337

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
338
        super().__init__()
thomwolf's avatar
thomwolf committed
339
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
340
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
341
342
343
344
345
346
347
348
349
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Rémi Louf's avatar
Rémi Louf committed
350
class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
351
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
352
        super().__init__()
353
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
354
355
        self.is_decoder = config.is_decoder
        if self.is_decoder:
356
            self.crossattention = BertAttention(config)
Rémi Louf's avatar
Rémi Louf committed
357
358
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
359

360
361
362
363
364
365
366
367
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
thomwolf's avatar
thomwolf committed
368
369
370
        self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights
Rémi Louf's avatar
Rémi Louf committed
371

372
        if self.is_decoder and encoder_hidden_states is not None:
373
374
375
            cross_attention_outputs = self.crossattention(
                attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask
            )
thomwolf's avatar
thomwolf committed
376
377
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights
Rémi Louf's avatar
Rémi Louf committed
378

Rémi Louf's avatar
Rémi Louf committed
379
        intermediate_output = self.intermediate(attention_output)
Rémi Louf's avatar
Rémi Louf committed
380
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
381
        outputs = (layer_output,) + outputs
Rémi Louf's avatar
Rémi Louf committed
382
        return outputs
383
384


thomwolf's avatar
thomwolf committed
385
class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
386
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
387
        super().__init__()
thomwolf's avatar
thomwolf committed
388
389
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
Rémi Louf's avatar
Rémi Louf committed
390
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
391

392
393
394
395
396
397
398
399
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
400
401
        all_hidden_states = ()
        all_attentions = ()
402
        for i, layer_module in enumerate(self.layer):
403
            if self.output_hidden_states:
404
                all_hidden_states = all_hidden_states + (hidden_states,)
405

406
407
408
            layer_outputs = layer_module(
                hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask
            )
409
410
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
411
            if self.output_attentions:
412
                all_attentions = all_attentions + (layer_outputs[1],)
413
414
415

        # Add last layer
        if self.output_hidden_states:
416
            all_hidden_states = all_hidden_states + (hidden_states,)
417

418
        outputs = (hidden_states,)
419
        if self.output_hidden_states:
420
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
421
        if self.output_attentions:
422
            outputs = outputs + (all_attentions,)
423
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
424
425
426
427


class BertPooler(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
428
        super().__init__()
thomwolf's avatar
thomwolf committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
443
        super().__init__()
thomwolf's avatar
thomwolf committed
444
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
445
        if isinstance(config.hidden_act, str):
thomwolf's avatar
thomwolf committed
446
447
448
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
449
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
450
451
452
453
454
455
456
457
458

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
459
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
460
        super().__init__()
thomwolf's avatar
thomwolf committed
461
462
463
464
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
465
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
466

thomwolf's avatar
thomwolf committed
467
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
468

469
470
471
        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

thomwolf's avatar
thomwolf committed
472
473
    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
Lysandre Debut's avatar
Lysandre Debut committed
474
        hidden_states = self.decoder(hidden_states)
thomwolf's avatar
thomwolf committed
475
476
477
478
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
479
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
480
        super().__init__()
thomwolf's avatar
thomwolf committed
481
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
490
        super().__init__()
thomwolf's avatar
thomwolf committed
491
492
493
494
495
496
497
498
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
499
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
500
        super().__init__()
thomwolf's avatar
thomwolf committed
501
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


510
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
511
    """ An abstract class to handle weights initialization and
512
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
513
    """
514

515
    config_class = BertConfig
516
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
517
518
519
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

520
521
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
522
523
524
525
526
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
527
528
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
529
530
531
532
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


Lysandre's avatar
Lysandre committed
533
534
535
BERT_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
Lysandre's avatar
Fixes  
Lysandre committed
536
    usage and behavior.
thomwolf's avatar
thomwolf committed
537

thomwolf's avatar
thomwolf committed
538
    Parameters:
Rémi Louf's avatar
Rémi Louf committed
539
        config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
540
            Initializing with a config file does not load the weights associated with the model, only the configuration.
541
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
542
543
544
"""

BERT_INPUTS_DOCSTRING = r"""
Lysandre's avatar
Lysandre committed
545
546
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Lysandre's avatar
Lysandre committed
547
548
            Indices of input sequence tokens in the vocabulary.

549
550
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
Lysandre's avatar
Lysandre committed
551
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.
Lysandre's avatar
Lysandre committed
552

Lysandre's avatar
Lysandre committed
553
554
            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
555
556
557
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
Lysandre's avatar
Lysandre committed
558

Lysandre's avatar
Lysandre committed
559
            `What are attention masks? <../glossary.html#attention-mask>`__
Lysandre's avatar
Lysandre committed
560
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
561
562
563
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
Lysandre's avatar
Lysandre committed
564

Lysandre's avatar
Lysandre committed
565
566
            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
567
568
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
Lysandre's avatar
Lysandre committed
569

Lysandre's avatar
Lysandre committed
570
571
            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
572
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
573
            Mask values selected in ``[0, 1]``:
Lysandre's avatar
Lysandre committed
574
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
Lysandre's avatar
Lysandre committed
575
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
576
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
577
578
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
Lysandre's avatar
Lysandre committed
579
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
580
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
Lysandre's avatar
Lysandre committed
581
582
            if the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
583
584
585
586
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
587
588
"""

589
590
591
592
593

@add_start_docstrings(
    "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
594
class BertModel(BertPreTrainedModel):
Lysandre's avatar
Lysandre committed
595
    """
thomwolf's avatar
thomwolf committed
596

Lysandre's avatar
Lysandre committed
597
598
599
600
    The model can behave as an encoder (with only self-attention) as well
    as a decoder, in which case a layer of cross-attention is added between
    the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
    Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
thomwolf's avatar
thomwolf committed
601

Lysandre's avatar
Lysandre committed
602
603
604
605
606
607
    To behave as an decoder the model needs to be initialized with the
    :obj:`is_decoder` argument of the configuration set to :obj:`True`; an
    :obj:`encoder_hidden_states` is expected as an input to the forward pass.

    .. _`Attention is all you need`:
        https://arxiv.org/abs/1706.03762
thomwolf's avatar
thomwolf committed
608
609

    """
610

thomwolf's avatar
thomwolf committed
611
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
612
        super().__init__(config)
613
        self.config = config
thomwolf's avatar
thomwolf committed
614

thomwolf's avatar
thomwolf committed
615
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
616
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
617
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
618

619
        self.init_weights()
thomwolf's avatar
thomwolf committed
620

thomwolf's avatar
thomwolf committed
621
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
622
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
623

thomwolf's avatar
thomwolf committed
624
625
    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value
626

thomwolf's avatar
thomwolf committed
627
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
628
629
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
630
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
631
632
        """
        for layer, heads in heads_to_prune.items():
633
            self.encoder.layer[layer].attention.prune_heads(heads)
thomwolf's avatar
thomwolf committed
634

Lysandre's avatar
Lysandre committed
635
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
636
637
638
639
640
641
642
643
644
645
646
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
Lysandre's avatar
Lysandre committed
647
648
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
649
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during pre-training.

            This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.
664

Lysandre's avatar
Lysandre committed
665
666
667
668
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
669

Lysandre's avatar
Lysandre committed
670
671
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
672

Lysandre's avatar
Lysandre committed
673
674
    Examples::

Lysandre's avatar
Lysandre committed
675
676
677
        from transformers import BertModel, BertTokenizer
        import torch

Lysandre's avatar
Lysandre committed
678
679
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
680

Lysandre's avatar
Lysandre committed
681
682
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
Lysandre's avatar
Lysandre committed
683

Lysandre's avatar
Lysandre committed
684
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
685
686

        """
Lysandre's avatar
Lysandre committed
687

688
689
690
691
692
693
694
695
696
697
698
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

thomwolf's avatar
thomwolf committed
699
        if attention_mask is None:
Julien Chaumond's avatar
Julien Chaumond committed
700
            attention_mask = torch.ones(input_shape, device=device)
thomwolf's avatar
thomwolf committed
701
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
702
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
703

704
705
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
706
707
708
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
            attention_mask, input_shape, self.device
        )
thomwolf's avatar
thomwolf committed
709

Rémi Louf's avatar
Rémi Louf committed
710
        # If a 2D ou 3D attention mask is provided for the cross-attention
Rémi Louf's avatar
Rémi Louf committed
711
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
712
713
714
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
715
            if encoder_attention_mask is None:
716
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
717
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
718
719
        else:
            encoder_extended_attention_mask = None
Rémi Louf's avatar
Rémi Louf committed
720

thomwolf's avatar
thomwolf committed
721
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
722
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
723
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
724
725
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
726
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
thomwolf's avatar
thomwolf committed
727

728
729
730
731
732
733
734
735
736
737
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
        )
738
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
739
        pooled_output = self.pooler(sequence_output)
740

741
742
743
        outputs = (sequence_output, pooled_output,) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
744
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
745
746


747
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
748
    """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
Lysandre's avatar
Lysandre committed
749
    a `next sentence prediction (classification)` head. """,
750
751
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
752
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
753
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
754
        super().__init__(config)
755

thomwolf's avatar
thomwolf committed
756
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
757
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
758

759
        self.init_weights()
thomwolf's avatar
thomwolf committed
760

thomwolf's avatar
thomwolf committed
761
    def get_output_embeddings(self):
762
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
763

Lysandre's avatar
Lysandre committed
764
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
765
766
767
768
769
770
771
772
773
774
775
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        next_sentence_label=None,
    ):
Lysandre's avatar
Lysandre committed
776
777
778
        r"""
        masked_lm_labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
779
780
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
781
782
783
784
785
786
787
788
789
790
791
792
793
            in ``[0, ..., config.vocab_size]``
        next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
794
        seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Lysandre's avatar
Lysandre committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
            Prediction scores of the next sequence prediction (classification) head (scores of True/False
            continuation before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.


    Examples::

Lysandre's avatar
Lysandre committed
812
813
814
        from transformers import BertTokenizer, BertForPreTraining
        import torch

Lysandre's avatar
Lysandre committed
815
816
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForPreTraining.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
817

Lysandre's avatar
Lysandre committed
818
819
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
Lysandre's avatar
Lysandre committed
820

Lysandre's avatar
Lysandre committed
821
822
823
        prediction_scores, seq_relationship_scores = outputs[:2]

        """
824
825
826
827
828
829
830
831
832

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
833
834

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
835
836
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

837
838
839
        outputs = (prediction_scores, seq_relationship_score,) + outputs[
            2:
        ]  # add hidden states and attention if they are here
840

thomwolf's avatar
thomwolf committed
841
        if masked_lm_labels is not None and next_sentence_label is not None:
LysandreJik's avatar
LysandreJik committed
842
            loss_fct = CrossEntropyLoss()
843
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
844
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
845
            total_loss = masked_lm_loss + next_sentence_loss
846
            outputs = (total_loss,) + outputs
847
848

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
849
850


Lysandre's avatar
Lysandre committed
851
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
852
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
853
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
854
        super().__init__(config)
thomwolf's avatar
thomwolf committed
855

thomwolf's avatar
thomwolf committed
856
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
857
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
858

859
        self.init_weights()
thomwolf's avatar
thomwolf committed
860

thomwolf's avatar
thomwolf committed
861
    def get_output_embeddings(self):
862
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
863

Lysandre's avatar
Lysandre committed
864
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
865
866
867
868
869
870
871
872
873
874
875
876
877
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        lm_labels=None,
    ):
Lysandre's avatar
Lysandre committed
878
879
880
        r"""
        masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
881
882
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
883
884
885
            in ``[0, ..., config.vocab_size]``
        lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the left-to-right language modeling loss (next word prediction).
Lysandre's avatar
Lysandre committed
886
887
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
            in ``[0, ..., config.vocab_size]``

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`lm_labels` is provided):
                Next token prediction loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

        Examples::

Lysandre's avatar
Lysandre committed
912
913
914
            from transformers import BertTokenizer, BertForMaskedLM
            import torch

Lysandre's avatar
Lysandre committed
915
916
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertForMaskedLM.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
917

Lysandre's avatar
Lysandre committed
918
919
            input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
            outputs = model(input_ids, masked_lm_labels=input_ids)
Lysandre's avatar
Lysandre committed
920

Lysandre's avatar
Lysandre committed
921
922
923
            loss, prediction_scores = outputs[:2]

        """
924
925
926
927
928
929
930
931
932
933
934

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
thomwolf's avatar
thomwolf committed
935
936

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
937
938
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
939
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
940
941
942
943
944

        # Although this may seem awkward, BertForMaskedLM supports two scenarios:
        # 1. If a tensor that contains the indices of masked labels is provided,
        #    the cross-entropy is the MLM cross-entropy that measures the likelihood
        #    of predictions for masked words.
945
        # 2. If `lm_labels` is provided we are in a causal scenario where we
946
        #    try to predict the next token for each input in the decoder.
thomwolf's avatar
thomwolf committed
947
        if masked_lm_labels is not None:
Lysandre's avatar
Lysandre committed
948
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
949
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
950
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
951

952
        if lm_labels is not None:
953
            # we are doing next-token prediction; shift prediction scores and input ids by one
Rémi Louf's avatar
Rémi Louf committed
954
            prediction_scores = prediction_scores[:, :-1, :].contiguous()
955
            lm_labels = lm_labels[:, 1:].contiguous()
LysandreJik's avatar
LysandreJik committed
956
            loss_fct = CrossEntropyLoss()
957
            ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), lm_labels.view(-1))
958
            outputs = (ltr_lm_loss,) + outputs
959

960
        return outputs  # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
961
962


963
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
964
    """Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING,
965
)
thomwolf's avatar
thomwolf committed
966
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
967
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
968
        super().__init__(config)
thomwolf's avatar
thomwolf committed
969

thomwolf's avatar
thomwolf committed
970
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
971
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
972

973
        self.init_weights()
thomwolf's avatar
thomwolf committed
974

Lysandre's avatar
Lysandre committed
975
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
976
977
978
979
980
981
982
983
984
985
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        next_sentence_label=None,
    ):
Lysandre's avatar
Lysandre committed
986
987
988
989
990
991
992
993
994
995
996
        r"""
        next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
            Next sequence prediction (classification) loss.
997
        seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Lysandre's avatar
Lysandre committed
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1013
1014
1015
        from transformers import BertTokenizer, BertForNextSentencePrediction
        import torch

Lysandre's avatar
Lysandre committed
1016
1017
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1018

Lysandre's avatar
Lysandre committed
1019
1020
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
Lysandre's avatar
Lysandre committed
1021

Lysandre's avatar
Lysandre committed
1022
1023
1024
        seq_relationship_scores = outputs[0]

        """
1025
1026
1027
1028
1029
1030
1031
1032
1033

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1034

thomwolf's avatar
thomwolf committed
1035
1036
        pooled_output = outputs[1]

1037
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
1038

1039
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1040
        if next_sentence_label is not None:
LysandreJik's avatar
LysandreJik committed
1041
            loss_fct = CrossEntropyLoss()
1042
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
1043
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
1044
1045

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1046
1047


1048
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1049
    """Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1050
    the pooled output) e.g. for GLUE tasks. """,
1051
1052
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1053
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1054
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1055
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1056
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1057

thomwolf's avatar
thomwolf committed
1058
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1059
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1060
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
1061

1062
        self.init_weights()
thomwolf's avatar
thomwolf committed
1063

Lysandre's avatar
Lysandre committed
1064
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
Lysandre's avatar
Lysandre committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1102
1103
1104
        from transformers import BertTokenizer, BertForSequenceClassification
        import torch

Lysandre's avatar
Lysandre committed
1105
1106
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1107

Lysandre's avatar
Lysandre committed
1108
1109
1110
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
Lysandre's avatar
Lysandre committed
1111

Lysandre's avatar
Lysandre committed
1112
1113
1114
        loss, logits = outputs[:2]

        """
1115
1116
1117
1118
1119
1120
1121
1122
1123

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1124

thomwolf's avatar
thomwolf committed
1125
1126
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1127
1128
1129
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1130
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1131

thomwolf's avatar
thomwolf committed
1132
        if labels is not None:
1133
1134
1135
1136
1137
1138
1139
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1140
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1141
1142

        return outputs  # (loss), logits, (hidden_states), (attentions)
1143
1144


1145
1146
@add_start_docstrings(
    """Bert Model with a multiple choice classification head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1147
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
1148
1149
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1150
class BertForMultipleChoice(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1151
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1152
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1153

thomwolf's avatar
thomwolf committed
1154
        self.bert = BertModel(config)
1155
1156
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1157

1158
        self.init_weights()
1159

Lysandre's avatar
Lysandre committed
1160
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
Lysandre's avatar
Lysandre committed
1171
1172
1173
1174
1175
1176
1177
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1178
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre Debut's avatar
Lysandre Debut committed
1179
        loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
Lysandre's avatar
Lysandre committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            Classification loss.
        classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
            `num_choices` is the second dimension of the input tensors. (see `input_ids` above).

            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1199
1200
1201
        from transformers import BertTokenizer, BertForMultipleChoice
        import torch

Lysandre's avatar
Lysandre committed
1202
1203
1204
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
Lysandre's avatar
Lysandre committed
1205

Lysandre's avatar
Lysandre committed
1206
1207
1208
        input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
Lysandre's avatar
Lysandre committed
1209

Lysandre's avatar
Lysandre committed
1210
1211
1212
        loss, classification_scores = outputs[:2]

        """
thomwolf's avatar
thomwolf committed
1213
1214
        num_choices = input_ids.shape[1]

1215
1216
1217
1218
1219
        input_ids = input_ids.view(-1, input_ids.size(-1))
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None

1220
1221
1222
1223
1224
1225
1226
1227
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1228

thomwolf's avatar
thomwolf committed
1229
1230
        pooled_output = outputs[1]

1231
1232
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1233
        reshaped_logits = logits.view(-1, num_choices)
1234

1235
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1236

1237
1238
1239
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1240
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1241
1242

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1243
1244


1245
1246
@add_start_docstrings(
    """Bert Model with a token classification head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1247
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
1248
1249
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1250
class BertForTokenClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1251
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1252
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1253
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1254

thomwolf's avatar
thomwolf committed
1255
        self.bert = BertModel(config)
1256
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1257
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1258

1259
        self.init_weights()
1260

Lysandre's avatar
Lysandre committed
1261
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
Lysandre's avatar
Lysandre committed
1272
1273
1274
1275
1276
1277
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1278
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1297
1298
1299
        from transformers import BertTokenizer, BertForTokenClassification
        import torch

Lysandre's avatar
Lysandre committed
1300
1301
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1302

Lysandre's avatar
Lysandre committed
1303
1304
1305
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
Lysandre's avatar
Lysandre committed
1306

Lysandre's avatar
Lysandre committed
1307
1308
1309
        loss, scores = outputs[:2]

        """
1310
1311
1312
1313
1314
1315
1316
1317
1318

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1319

thomwolf's avatar
thomwolf committed
1320
1321
        sequence_output = outputs[0]

1322
1323
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1324

1325
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1326
1327
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1328
1329
1330
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
1331
1332
1333
1334
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
1335
1336
1337
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1338
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1339

thomwolf's avatar
thomwolf committed
1340
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1341
1342


1343
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1344
    """Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Lysandre's avatar
Lysandre committed
1345
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
1346
1347
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1348
class BertForQuestionAnswering(BertPreTrainedModel):
Lysandre's avatar
Lysandre committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
    def __init__(self, config):
        super(BertForQuestionAnswering, self).__init__(config)
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
1372
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1373
1374
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
Lysandre's avatar
Lysandre committed
1375
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
1376
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1377
1378
1379
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

Lysandre's avatar
Lysandre committed
1380
    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1381
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
1382
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
thomwolf's avatar
thomwolf committed
1383
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
Lysandre's avatar
Lysandre committed
1384
        start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
thomwolf's avatar
thomwolf committed
1385
            Span-start scores (before SoftMax).
Lysandre's avatar
Lysandre committed
1386
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
thomwolf's avatar
thomwolf committed
1387
            Span-end scores (before SoftMax).
Lysandre's avatar
Lysandre committed
1388
1389
1390
1391
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

thomwolf's avatar
thomwolf committed
1392
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
Lysandre's avatar
Lysandre committed
1393
1394
1395
1396
1397
1398
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
thomwolf's avatar
thomwolf committed
1399
1400
1401

    Examples::

Lysandre's avatar
Lysandre committed
1402
1403
1404
        from transformers import BertTokenizer, BertForQuestionAnswering
        import torch

wangfei's avatar
wangfei committed
1405
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
1406
        model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
Lysandre's avatar
Lysandre committed
1407

1408
        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
1409
        input_ids = tokenizer.encode(question, text)
1410
        token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))]
1411
        start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids]))
Lysandre's avatar
Lysandre committed
1412

1413
        all_tokens = tokenizer.convert_ids_to_tokens(input_ids)
Lysandre's avatar
Lysandre committed
1414
1415
1416
        answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])

        assert answer == "a nice puppet"
1417

Lysandre's avatar
Lysandre committed
1418
        """
1419
1420
1421
1422
1423
1424
1425
1426
1427

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1428

thomwolf's avatar
thomwolf committed
1429
1430
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1431
1432
1433
1434
1435
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1436
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1452
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1453
1454

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)