test_examples.py 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Stas Bekman's avatar
Stas Bekman committed
24
25
import torch

26
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
27
from transformers.file_utils import is_apex_available
28
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
29

30
31
32

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
33
34
35
36
37
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
38
        "multiple-choice",
39
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
        "summarization",
        "translation",
42
        "image-classification",
43
        "speech-recognition",
44
        "audio-classification",
45
        "speech-pretraining",
46
        "image-pretraining",
47
    ]
48
49
50
51
52
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
53
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
54
    import run_clm
55
56
    import run_generation
    import run_glue
57
    import run_image_classification
58
    import run_mae
59
    import run_mlm
60
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
61
    import run_qa as run_squad
62
    import run_seq2seq_qa as run_squad_seq2seq
63
    import run_speech_recognition_ctc
64
    import run_speech_recognition_seq2seq
65
    import run_summarization
66
    import run_swag
67
    import run_translation
68
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
69

70

71
72
73
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
74

75

76
77
def get_setup_file():
    parser = argparse.ArgumentParser()
78
    parser.add_argument("-f")
79
80
81
82
    args = parser.parse_args()
    return args.f


83
84
85
86
87
88
89
90
91
92
93
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


94
def is_cuda_and_apex_available():
95
96
97
98
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


99
class ExamplesTests(TestCasePlus):
100
101
102
103
    def test_run_glue(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

104
105
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
106
            run_glue.py
107
            --model_name_or_path distilbert-base-uncased
108
109
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
110
111
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
112
113
            --do_train
            --do_eval
114
115
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
116
117
118
119
120
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
121
            """.split()
122

123
        if is_cuda_and_apex_available():
124
            testargs.append("--fp16")
125

126
        with patch.object(sys, "argv", testargs):
127
128
            run_glue.main()
            result = get_results(tmp_dir)
129
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
130

Sylvain Gugger's avatar
Sylvain Gugger committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def test_run_clm(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
159
160
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
            self.assertLess(result["perplexity"], 100)

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def test_run_clm_config_overrides(self):
        # test that config_overrides works, despite the misleading dumps of default un-updated
        # config via tokenizer

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_type gpt2
            --tokenizer_name gpt2
            --train_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --config_overrides n_embd=10,n_head=2
            """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        logger = run_clm.logger
        with patch.object(sys, "argv", testargs):
            with CaptureLogger(logger) as cl:
                run_clm.main()

        self.assertIn('"n_embd": 10', cl.out)
        self.assertIn('"n_head": 2', cl.out)

188
    def test_run_mlm(self):
Julien Chaumond's avatar
Julien Chaumond committed
189
190
191
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

192
193
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
194
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
195
            --model_name_or_path distilroberta-base
196
197
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
198
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
199
200
201
            --overwrite_output_dir
            --do_train
            --do_eval
202
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
203
            --num_train_epochs=1
204
        """.split()
205
206
207

        if torch_device != "cuda":
            testargs.append("--no_cuda")
208

Julien Chaumond's avatar
Julien Chaumond committed
209
        with patch.object(sys, "argv", testargs):
210
211
            run_mlm.main()
            result = get_results(tmp_dir)
212
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
213

214
215
216
217
    def test_run_ner(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

218
219
220
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

221
222
223
224
225
226
227
228
229
230
231
232
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
235
            --num_train_epochs={epochs}
236
            --seed 7
237
238
239
240
241
242
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
243
244
            run_ner.main()
            result = get_results(tmp_dir)
245
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
246
247
            self.assertLess(result["eval_loss"], 0.5)

248
249
250
251
    def test_run_squad(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

252
253
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
254
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
257
258
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
259
260
            --output_dir {tmp_dir}
            --overwrite_output_dir
261
262
263
264
265
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
268
269
        """.split()

270
        with patch.object(sys, "argv", testargs):
271
272
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
273
274
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def test_run_squad_seq2seq(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
            --model_name_or_path t5-small
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
305
306
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    def test_run_swag(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
330
331
            run_swag.main()
            result = get_results(tmp_dir)
332
333
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

334
335
336
337
    def test_generation(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

338
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
339

340
        if is_cuda_and_apex_available():
341
342
343
344
345
346
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
347
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
348
            result = run_generation.main()
349
            self.assertGreaterEqual(len(result[0]), 10)
350
351

    @slow
352
    def test_run_summarization(self):
353
354
355
356
357
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
358
            run_summarization.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
375
            run_summarization.main()
376
            result = get_results(tmp_dir)
377
378
379
380
381
382
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
383
    def test_run_translation(self):
384
385
386
387
388
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
389
            run_translation.py
390
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
391
392
            --source_lang en
            --target_lang ro
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
410
            run_translation.main()
411
            result = get_results(tmp_dir)
412
            self.assertGreaterEqual(result["eval_bleu"], 30)
413
414
415
416
417
418
419
420
421
422

    def test_run_image_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
423
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
424
425
            --do_train
            --do_eval
426
            --learning_rate 1e-4
427
428
429
430
431
432
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
433
            --max_steps 10
434
            --train_val_split 0.1
435
            --seed 42
436
437
438
439
440
441
442
443
444
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
445
446
447
448
449
450
451
452
453
454

    def test_run_speech_recognition_ctc(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
455
            --dataset_name hf-internal-testing/librispeech_asr_dummy
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    def test_run_speech_recognition_seq2seq(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_seq2seq.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 4
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_seq2seq.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])

512
513
514
515
516
517
518
519
520
521
522
523
524
    def test_run_audio_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
525
            --audio_column_name audio
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
546
547
548
549
550
551
552
553
554
555

    def test_run_wav2vec2_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
556
            --dataset_name hf-internal-testing/librispeech_asr_dummy
557
558
559
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
560
561
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
562
            --preprocessing_num_workers 16
563
            --max_train_steps 2
564
565
566
567
568
569
570
571
572
573
574
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

    def test_run_vit_mae_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mae.py
            --output_dir {tmp_dir}
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
            --max_steps 10
            --train_val_split 0.1
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_mae.main()
            model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)