test_examples.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Stas Bekman's avatar
Stas Bekman committed
24
25
import torch

26
from transformers import Wav2Vec2ForPreTraining
27
from transformers.file_utils import is_apex_available
28
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device
29

30
31
32

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
33
34
35
36
37
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
38
        "multiple-choice",
39
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
        "summarization",
        "translation",
42
        "image-classification",
43
        "speech-recognition",
44
        "audio-classification",
45
        "speech-pretraining",
46
    ]
47
48
49
50
51
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
52
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
53
    import run_clm
54
55
    import run_generation
    import run_glue
56
    import run_image_classification
57
    import run_mlm
58
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    import run_qa as run_squad
60
    import run_speech_recognition_ctc
61
    import run_summarization
62
    import run_swag
63
    import run_translation
64
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
65

66

67
68
69
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
70

71

72
73
def get_setup_file():
    parser = argparse.ArgumentParser()
74
    parser.add_argument("-f")
75
76
77
78
    args = parser.parse_args()
    return args.f


79
80
81
82
83
84
85
86
87
88
89
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


90
def is_cuda_and_apex_available():
91
92
93
94
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


95
class ExamplesTests(TestCasePlus):
96
97
98
99
    def test_run_glue(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

100
101
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
102
            run_glue.py
103
            --model_name_or_path distilbert-base-uncased
104
105
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
108
109
            --do_train
            --do_eval
110
111
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
112
113
114
115
116
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
117
            """.split()
118

119
        if is_cuda_and_apex_available():
120
            testargs.append("--fp16")
121

122
        with patch.object(sys, "argv", testargs):
123
124
            run_glue.main()
            result = get_results(tmp_dir)
125
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
126

Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_run_clm(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
155
156
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
            self.assertLess(result["perplexity"], 100)

159
    def test_run_mlm(self):
Julien Chaumond's avatar
Julien Chaumond committed
160
161
162
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

163
164
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
165
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
166
            --model_name_or_path distilroberta-base
167
168
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
169
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
            --overwrite_output_dir
            --do_train
            --do_eval
173
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
174
            --num_train_epochs=1
175
        """.split()
176
177
178

        if torch_device != "cuda":
            testargs.append("--no_cuda")
179

Julien Chaumond's avatar
Julien Chaumond committed
180
        with patch.object(sys, "argv", testargs):
181
182
            run_mlm.main()
            result = get_results(tmp_dir)
183
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
184

185
186
187
188
    def test_run_ner(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

189
190
191
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

192
193
194
195
196
197
198
199
200
201
202
203
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
206
            --num_train_epochs={epochs}
207
            --seed 7
208
209
210
211
212
213
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
214
215
            run_ner.main()
            result = get_results(tmp_dir)
216
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
217
218
            self.assertLess(result["eval_loss"], 0.5)

219
220
221
222
    def test_run_squad(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

223
224
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
225
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
228
229
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
230
231
            --output_dir {tmp_dir}
            --overwrite_output_dir
232
233
234
235
236
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
237
238
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
239
240
        """.split()

241
        with patch.object(sys, "argv", testargs):
242
243
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
244
245
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def test_run_swag(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
269
270
            run_swag.main()
            result = get_results(tmp_dir)
271
272
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

273
274
275
276
    def test_generation(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

277
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
278

279
        if is_cuda_and_apex_available():
280
281
282
283
284
285
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
286
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
287
            result = run_generation.main()
288
            self.assertGreaterEqual(len(result[0]), 10)
289
290

    @slow
291
    def test_run_summarization(self):
292
293
294
295
296
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
297
            run_summarization.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
314
            run_summarization.main()
315
            result = get_results(tmp_dir)
316
317
318
319
320
321
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
322
    def test_run_translation(self):
323
324
325
326
327
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
328
            run_translation.py
329
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
330
331
            --source_lang en
            --target_lang ro
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
349
            run_translation.main()
350
            result = get_results(tmp_dir)
351
            self.assertGreaterEqual(result["eval_bleu"], 30)
352
353
354
355
356
357
358
359
360
361

    def test_run_image_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
362
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
363
364
            --do_train
            --do_eval
365
            --learning_rate 1e-4
366
367
368
369
370
371
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
372
            --max_steps 10
373
            --train_val_split 0.1
374
            --seed 42
375
376
377
378
379
380
381
382
383
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
384
385
386
387
388
389
390
391
392
393

    def test_run_speech_recognition_ctc(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
394
            --dataset_name hf-internal-testing/librispeech_asr_dummy
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
417
418
419
420
421
422
423
424
425
426
427
428
429
430

    def test_run_audio_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
431
            --audio_column_name audio
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
452
453
454
455
456
457
458
459
460
461

    def test_run_wav2vec2_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
462
            --dataset_name hf-internal-testing/librispeech_asr_dummy
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
            --preprocessing_num_workers 16
            --max_train_steps 5
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)