test_examples.py 17.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Stas Bekman's avatar
Stas Bekman committed
24
25
import torch

26
from transformers import Wav2Vec2ForPreTraining
27
from transformers.file_utils import is_apex_available
28
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device
29

30
31
32

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
33
34
35
36
37
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
38
        "multiple-choice",
39
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
        "summarization",
        "translation",
42
        "image-classification",
43
        "speech-recognition",
44
        "audio-classification",
45
        "speech-pretraining",
46
    ]
47
48
49
50
51
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
52
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
53
    import run_clm
54
55
    import run_generation
    import run_glue
56
    import run_image_classification
57
    import run_mlm
58
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    import run_qa as run_squad
60
    import run_seq2seq_qa as run_squad_seq2seq
61
    import run_speech_recognition_ctc
62
    import run_summarization
63
    import run_swag
64
    import run_translation
65
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
66

67

68
69
70
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
71

72

73
74
def get_setup_file():
    parser = argparse.ArgumentParser()
75
    parser.add_argument("-f")
76
77
78
79
    args = parser.parse_args()
    return args.f


80
81
82
83
84
85
86
87
88
89
90
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


91
def is_cuda_and_apex_available():
92
93
94
95
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


96
class ExamplesTests(TestCasePlus):
97
98
99
100
    def test_run_glue(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

101
102
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
103
            run_glue.py
104
            --model_name_or_path distilbert-base-uncased
105
106
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
107
108
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
109
110
            --do_train
            --do_eval
111
112
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
113
114
115
116
117
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
118
            """.split()
119

120
        if is_cuda_and_apex_available():
121
            testargs.append("--fp16")
122

123
        with patch.object(sys, "argv", testargs):
124
125
            run_glue.main()
            result = get_results(tmp_dir)
126
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
127

Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def test_run_clm(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
156
157
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
            self.assertLess(result["perplexity"], 100)

160
    def test_run_mlm(self):
Julien Chaumond's avatar
Julien Chaumond committed
161
162
163
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

164
165
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
166
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
167
            --model_name_or_path distilroberta-base
168
169
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
170
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
171
172
173
            --overwrite_output_dir
            --do_train
            --do_eval
174
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
175
            --num_train_epochs=1
176
        """.split()
177
178
179

        if torch_device != "cuda":
            testargs.append("--no_cuda")
180

Julien Chaumond's avatar
Julien Chaumond committed
181
        with patch.object(sys, "argv", testargs):
182
183
            run_mlm.main()
            result = get_results(tmp_dir)
184
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
185

186
187
188
189
    def test_run_ner(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

190
191
192
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

193
194
195
196
197
198
199
200
201
202
203
204
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
207
            --num_train_epochs={epochs}
208
            --seed 7
209
210
211
212
213
214
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
215
216
            run_ner.main()
            result = get_results(tmp_dir)
217
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
218
219
            self.assertLess(result["eval_loss"], 0.5)

220
221
222
223
    def test_run_squad(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

224
225
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
226
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
231
232
            --output_dir {tmp_dir}
            --overwrite_output_dir
233
234
235
236
237
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
240
241
        """.split()

242
        with patch.object(sys, "argv", testargs):
243
244
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
245
246
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    def test_run_squad_seq2seq(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
            --model_name_or_path t5-small
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 10)
            self.assertGreaterEqual(result["eval_rougeL"], 10)
            self.assertGreaterEqual(result["eval_rougeLsum"], 10)

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def test_run_swag(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
304
305
            run_swag.main()
            result = get_results(tmp_dir)
306
307
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

308
309
310
311
    def test_generation(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

312
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
313

314
        if is_cuda_and_apex_available():
315
316
317
318
319
320
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
321
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
322
            result = run_generation.main()
323
            self.assertGreaterEqual(len(result[0]), 10)
324
325

    @slow
326
    def test_run_summarization(self):
327
328
329
330
331
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
332
            run_summarization.py
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
349
            run_summarization.main()
350
            result = get_results(tmp_dir)
351
352
353
354
355
356
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
357
    def test_run_translation(self):
358
359
360
361
362
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
363
            run_translation.py
364
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
365
366
            --source_lang en
            --target_lang ro
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
384
            run_translation.main()
385
            result = get_results(tmp_dir)
386
            self.assertGreaterEqual(result["eval_bleu"], 30)
387
388
389
390
391
392
393
394
395
396

    def test_run_image_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
397
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
398
399
            --do_train
            --do_eval
400
            --learning_rate 1e-4
401
402
403
404
405
406
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
407
            --max_steps 10
408
            --train_val_split 0.1
409
            --seed 42
410
411
412
413
414
415
416
417
418
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
419
420
421
422
423
424
425
426
427
428

    def test_run_speech_recognition_ctc(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
429
            --dataset_name hf-internal-testing/librispeech_asr_dummy
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
452
453
454
455
456
457
458
459
460
461
462
463
464
465

    def test_run_audio_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
466
            --audio_column_name audio
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
487
488
489
490
491
492
493
494
495
496

    def test_run_wav2vec2_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
497
            --dataset_name hf-internal-testing/librispeech_asr_dummy
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
            --preprocessing_num_workers 16
            --max_train_steps 5
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)