test_tokenization_common.py 75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

thomwolf's avatar
thomwolf committed
17
import os
18
import pickle
19
import re
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import shutil
21
import tempfile
22
from collections import OrderedDict
23
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
24

25
from transformers import PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast
26
from transformers.testing_utils import require_tf, require_torch, slow
Anthony MOI's avatar
Anthony MOI committed
27
from transformers.tokenization_utils import AddedToken
28

29

30
31
32
33
34
35
36
37
if TYPE_CHECKING:
    from transformers import (
        PretrainedConfig,
        PreTrainedModel,
        TFPreTrainedModel,
    )


38
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
39
40
41
42
43
44
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
        model = model_mapping[configuration]
        tokenizer = tokenizer_mapping[configuration][0]
        tokenizer_fast = tokenizer_mapping[configuration][1]

        model_tokenizer_mapping.update({tokenizer: (configuration, model)})
        if tokenizer_fast is not None:
            model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})

    return model_tokenizer_mapping


60
class TokenizerTesterMixin:
61

62
    tokenizer_class = None
Anthony MOI's avatar
Anthony MOI committed
63
    test_rust_tokenizer = False
64

65
66
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
67

68
69
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
70

71
72
73
74
    def get_input_output_texts(self, tokenizer):
        input_txt = self.get_clean_sequence(tokenizer)[0]
        return input_txt, input_txt

75
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20) -> Tuple[str, list]:
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

97
    def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]:
98
99
100
101
        if fast and self.test_rust_tokenizer:
            return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
        return [self.get_tokenizer(**kwargs)]

102
103
    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
104

105
    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
Anthony MOI's avatar
Anthony MOI committed
106
        raise NotImplementedError
107

108
109
110
111
112
113
114
    # def get_input_output_texts(self) -> Tuple[str, str]:
    #     """Feel free to overwrite"""
    #     # TODO: @property
    #     return (
    #         "This is a test",
    #         "This is a test",
    #     )
thomwolf's avatar
thomwolf committed
115

116
117
118
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
119
        # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
120
121
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
122
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
123
124
        ]

125
    def test_tokenizers_common_properties(self):
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
                    self.assertTrue(hasattr(tokenizer, attr + "_id"))

                self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
                self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))

                attributes_list = [
                    "model_max_length",
                    "init_inputs",
                    "init_kwargs",
                ]
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    attributes_list += [
                        "added_tokens_encoder",
                        "added_tokens_decoder",
                    ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
157

158
159
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
160
        tokenizers = self.get_tokenizers()
161
162
163
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertNotEqual(tokenizer.max_len, 42)
164

165
        # Now let's start the test
166
        tokenizers = self.get_tokenizers()
167
168
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
169
170
171
172
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
173
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
174
175
176
177
178
179
180
181
182
183
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        # Now let's start the test
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)
200

201
202
203
                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
204
                self.assertListEqual(before_tokens, after_tokens)
205
206
207
208
209
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)
210

211
                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
212
                self.assertEqual(tokenizer.model_max_length, 43)
213

214
215
                shutil.rmtree(tmpdirname)

216
    def test_pickle_tokenizer(self):
217
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
218
219
220
221
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertIsNotNone(tokenizer)
222

223
224
                text = "Munich and Berlin are nice cities"
                subwords = tokenizer.tokenize(text)
225

226
227
228
                filename = os.path.join(self.tmpdirname, "tokenizer.bin")
                with open(filename, "wb") as handle:
                    pickle.dump(tokenizer, handle)
229

230
231
                with open(filename, "rb") as handle:
                    tokenizer_new = pickle.load(handle)
232

233
                subwords_loaded = tokenizer_new.tokenize(text)
234

235
                self.assertListEqual(subwords, subwords_loaded)
236

Anthony MOI's avatar
Anthony MOI committed
237
238
239
240
241
242
    def test_pickle_added_tokens(self):
        tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True)
        tok2 = pickle.loads(pickle.dumps(tok1))

        self.assertEqual(tok1.__getstate__(), tok2.__getstate__())

243
    def test_added_tokens_do_lower_case(self):
244
245
246
247
248
        # TODO(thom) activate fast tokenizer tests once Rust tokenizers accepts white spaces in added tokens
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                special_token = tokenizer.all_special_tokens[0]
249

250
251
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
252

253
                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
254

255
256
257
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens(new_toks)
                self.assertEqual(added, 2)
258

259
260
                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)
261

262
263
264
265
266
267
                self.assertEqual(len(toks), len(toks2))
                self.assertListEqual(toks, toks2)
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    # Python tokenizers can have added tokens with spaces inside them
                    # cf https://github.com/huggingface/tokenizers/issues/302
                    self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
268

269
270
271
                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
                tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
272

273
274
                for special_token in tokenizer.all_special_tokens:
                    self.assertTrue(special_token in tokenized_sequence)
275

276
277
278
279
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                special_token = tokenizer.all_special_tokens[0]
280

281
282
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
283

284
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
285

286
                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
thomwolf's avatar
thomwolf committed
287

288
289
                added = tokenizer.add_tokens(new_toks)
                self.assertEqual(added, 4)
290

291
292
                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)
293

294
295
296
297
298
299
                self.assertEqual(len(toks), len(toks2))  # Length should still be the same
                self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    # Python tokenizers can have added tokens with spaces inside them
                    # cf https://github.com/huggingface/tokenizers/issues/302
                    self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
300

301
302
303
304
305
306
307
308
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)
309
310
311
312

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)
351

352
    def test_add_special_tokens(self):
353
354
355
356
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)
357

358
                special_token = "[SPECIAL_TOKEN]"
359

360
361
362
                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)
363

364
365
                text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
                encoded = tokenizer.encode(text, add_special_tokens=False)
366

367
368
369
                input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
                special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(encoded, input_encoded + special_token_id)
370

371
372
                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)
373

374
    def test_internal_consistency(self):
375
376
377
378
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, output_text = self.get_input_output_texts(tokenizer)
379

380
381
382
383
                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
                self.assertListEqual(ids, ids_2)
384

385
386
387
388
                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)
389

390
                self.assertEqual(text_2, output_text)
391

392
    def test_encode_decode_with_spaces(self):
393
394
395
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
LysandreJik's avatar
LysandreJik committed
396

397
398
399
400
401
402
                new_toks = ["[ABC]", "[DEF]"]  # TODO(thom) add this one back when Rust toks are ready: , "GHI IHG"]
                tokenizer.add_tokens(new_toks)
                input = "[ABC] [DEF] [ABC] [DEF]"  # TODO(thom) add back cf above: "[ABC] [DEF] [ABC] GHI IHG [DEF]"
                encoded = tokenizer.encode(input, add_special_tokens=False)
                decoded = tokenizer.decode(encoded)
                self.assertEqual(decoded, input)
403

404
405
406
407
408
    def test_pretrained_model_lists(self):
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
409

410
411
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
412

413
    def test_mask_output(self):
414
415
416
417
418
419
420
421
422
423
424
425
426
        tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

                if (
                    tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
                    and "token_type_ids" in tokenizer.model_input_names
                ):
                    seq_0 = "Test this method."
                    seq_1 = "With these inputs."
                    information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
                    sequences, mask = information["input_ids"], information["token_type_ids"]
                    self.assertEqual(len(sequences), len(mask))
427
428

    def test_number_of_added_tokens(self):
429
430
431
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
432

433
434
                seq_0 = "Test this method."
                seq_1 = "With these inputs."
435

436
                sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
437
                attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
438

439
440
441
442
443
                # Method is implemented (e.g. not GPT-2)
                if len(attached_sequences) != 2:
                    self.assertEqual(
                        tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
                    )
444
445

    def test_maximum_encoding_length_single_input(self):
446
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
447
448
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
449
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
450
451
452

                sequence = tokenizer.encode(seq_0, add_special_tokens=False)
                total_length = len(sequence)
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

                assert total_length > 1, "Issue with the testing sequence, please update it it's too short"

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_1 = seq_0 * model_max_length

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                assert (
                    total_length1 > model_max_length
                ), "Issue with the testing sequence, please update it it's too short"

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
                    with self.subTest(f"Padding: {padding_state}"):
                        for truncation_state in [True, "longest_first", "only_first"]:
                            with self.subTest(f"Truncation: {truncation_state}"):
                                output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
                        output = tokenizer(seq_1, padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"][0]), model_max_length)

                # Overflowing tokens
                stride = 2
                information = tokenizer(
491
492
493
494
495
496
                    seq_0,
                    max_length=total_length - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
497
                    # add_prefix_space=False,
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]
514

515
516
                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])
517

518
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
519

520
    def test_maximum_encoding_length_pair_input(self):
521
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
522
523
524
525
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Build a sequence from our model's vocabulary
                stride = 2
526
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
527
                if len(ids) <= 2 + stride:
528
529
                    seq_0 = (seq_0 + " ") * (2 + stride)
                    ids = None
530
531
532
533
534
535

                seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
                assert len(seq0_tokens) > 2 + stride

                seq_1 = "This is another sentence to be encoded."
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
536
                if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2:
537
538
539
540
541
542
543
544
545
546
                    seq1_tokens = seq1_tokens + seq1_tokens
                    seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False)
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

                assert len(seq1_tokens) > 2 + stride

                smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens

                # We are not using the special tokens - a bit too hard to test all the tokenizers with this
                # TODO try this again later
547
                sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)  # , add_prefix_space=False)
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_2 = seq_0 * model_max_length

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False)
                total_length2 = len(sequence2["input_ids"])
                assert total_length1 < model_max_length - 10, "Issue with the testing sequence, please update it."
                assert total_length2 > model_max_length, "Issue with the testing sequence, please update it."

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
                    with self.subTest(f"Padding: {padding_state}"):
                        for truncation_state in [True, "longest_first", "only_first"]:
                            with self.subTest(f"Truncation: {truncation_state}"):
                                output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer(
                                    [seq_2], [seq_1], padding=padding_state, truncation=truncation_state
                                )
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False)
                        self.assertNotEqual(len(output["input_ids"][0]), model_max_length)

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
                truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode(
                    seq_1, add_special_tokens=False
                )
                truncated_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[:-2]
                )
                truncated_longest_sequence = (
                    truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence
                )

                overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[
                    -(2 + stride) :
                ] + tokenizer.encode(seq_1, add_special_tokens=False)
                overflow_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :]
                )
                overflow_longest_sequence = (
                    overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence
                )

                information = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
621
                    # add_prefix_space=False,
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(
642
                        len(overflowing_tokens), 2 + stride
643
644
                    )  # No overflowing tokens when using 'longest' in python tokenizers

645
                information = tokenizer.encode_plus(
646
647
648
649
650
651
652
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation=True,
                    return_overflowing_tokens=True,
653
                    # add_prefix_space=False,
654
655
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(
                        len(overflowing_tokens), 2 + stride
                    )  # No overflowing tokens when using 'longest' in python tokenizers

                information_first_truncated = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_first",
                    return_overflowing_tokens=True,
                    # add_prefix_space=False,
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_first_truncated["input_ids"][0]
                    overflowing_tokens = information_first_truncated["input_ids"][1]
                    self.assertEqual(len(information_first_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens))
                    self.assertEqual(overflowing_tokens, overflow_first_sequence)
                else:
                    truncated_sequence = information_first_truncated["input_ids"]
                    overflowing_tokens = information_first_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :])

                information_second_truncated = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_second",
                    return_overflowing_tokens=True,
716
                    # add_prefix_space=False,
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_second_truncated["input_ids"][0]
                    overflowing_tokens = information_second_truncated["input_ids"][1]
                    self.assertEqual(len(information_second_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens))
                    self.assertEqual(overflowing_tokens, overflow_second_sequence)
                else:
                    truncated_sequence = information_second_truncated["input_ids"]
                    overflowing_tokens = information_second_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)
735

736
737
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :])
738

739
740
741
742
743
    # def test_encode_input_type(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             sequence = "Let's encode this sequence"
744

745
746
747
    #             tokens = sequence.split()  # tokenizer.tokenize(sequence)
    #             # input_ids = tokenizer.convert_tokens_to_ids(tokens)
    #             formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
748

749
750
751
752
753
    #             self.assertEqual(
    #                 tokenizer.encode(tokens, is_pretokenized=True, add_special_tokens=True), formatted_input
    #             )
    #             # This is not supported with the Rust tokenizers
    #             # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
    def test_swap_special_token(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                mask = "<mask>"
                sequence = "Encode this sequence"
                sequence_masked_0 = "Encode <mask> sequence"
                sequence_masked_1 = "<mask> this sequence"

                # Add tokens so that masked token isn't split
                tokenizer.add_tokens(sequence.split())
                tokenizer.add_special_tokens({"mask_token": mask})
                mask_ind = tokenizer.convert_tokens_to_ids(mask)
                encoded = tokenizer.encode(sequence, add_special_tokens=False)

                # Test first masked sequence
                encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
                mask_loc = encoded_masked.index(mask_ind)
                encoded_masked[mask_loc] = encoded[mask_loc]

                self.assertEqual(encoded_masked, encoded)

                # Test second masked sequence
                encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
                mask_loc = encoded_masked.index(mask_ind)
                encoded_masked[mask_loc] = encoded[mask_loc]

                self.assertEqual(encoded_masked, encoded)
783

784
    def test_special_tokens_mask(self):
785
786
787
788
789
790
791
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                # Testing single inputs
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
792
                    sequence_0, add_special_tokens=True, return_special_tokens_mask=True  # , add_prefix_space=False
793
794
795
796
797
798
799
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
                self.assertEqual(encoded_sequence, filtered_sequence)
800

801
    def test_special_tokens_mask_input_pairs(self):
802
803
804
805
806
807
808
809
810
811
812
813
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
814
                    # add_prefix_space=False,
815
816
817
818
819
820
821
822
823
824
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)
825

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    def test_right_and_left_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "left"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, padding=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding="longest")
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding=False)
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left
887
888

    def test_padding_to_max_length(self):
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
        """ We keep this test for backward compatibility but it should be remove when `pad_to_max_length` will e deprecated
        """
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
906
                # FIXME: the next line should be padding(max_length) to avoid warning
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, pad_to_max_length=True
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # Check that nothing is done when a maximum length is not specified
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right
923

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
    def test_padding_to_multiple_of(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            if tokenizer.pad_token is None:
                self.skipTest("No padding token.")
            else:
                with self.subTest(f"{tokenizer.__class__.__name__}"):
                    empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
                    normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
                    for key, value in empty_tokens.items():
                        self.assertEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))
                    for key, value in normal_tokens.items():
                        self.assertEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))

                    normal_tokens = tokenizer("This", pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
                        self.assertNotEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))

                    # Should also work with truncation
                    normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
                        self.assertEqual(len(value) % 8, 0, "BatchEncoding.{} is not multiple of 8".format(key))

                    # truncation to something which is not a multiple of pad_to_multiple_of raises an error
                    self.assertRaises(
                        ValueError,
                        tokenizer.__call__,
                        "This",
                        padding=True,
                        truncation=True,
                        max_length=12,
                        pad_to_multiple_of=8,
                    )

958
    def test_encode_plus_with_padding(self):
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_size = 10
                padding_idx = tokenizer.pad_token_id
                token_type_padding_idx = tokenizer.pad_token_type_id

                encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
                input_ids = encoded_sequence["input_ids"]
                special_tokens_mask = encoded_sequence["special_tokens_mask"]
                sequence_length = len(input_ids)

                # Test 'longest' and 'no_padding' don't do anything
                tokenizer.padding_side = "right"

                not_padded_sequence = tokenizer.encode_plus(sequence, padding=True, return_special_tokens_mask=True,)
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

                not_padded_sequence = tokenizer.encode_plus(sequence, padding=False, return_special_tokens_mask=True,)
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

                # Test right padding
                tokenizer.padding_side = "right"

                right_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                right_padded_input_ids = right_padded_sequence["input_ids"]

                right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
                right_padded_sequence_length = len(right_padded_input_ids)

                assert sequence_length + padding_size == right_padded_sequence_length
                assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
                assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask

                # Test left padding
                tokenizer.padding_side = "left"
                left_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                left_padded_input_ids = left_padded_sequence["input_ids"]
                left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
                left_padded_sequence_length = len(left_padded_input_ids)

                assert sequence_length + padding_size == left_padded_sequence_length
                assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
                assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

                if "token_type_ids" in tokenizer.model_input_names:
                    token_type_ids = encoded_sequence["token_type_ids"]
                    left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
                    right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

                    assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids
                    assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids

                if "attention_mask" in tokenizer.model_input_names:
                    attention_mask = encoded_sequence["attention_mask"]
                    right_padded_attention_mask = right_padded_sequence["attention_mask"]
                    left_padded_attention_mask = left_padded_sequence["attention_mask"]

                    assert attention_mask + [0] * padding_size == right_padded_attention_mask
                    assert [0] * padding_size + attention_mask == left_padded_attention_mask
1048
1049
1050
1051
1052
1053

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

        tokenizer = self.get_tokenizer(random_argument=True)
Lysandre's avatar
Style  
Lysandre committed
1054
        assert tokenizer.init_kwargs["random_argument"] is True
1055
        new_tokenizer = self.get_tokenizer(random_argument=False)
Lysandre's avatar
Style  
Lysandre committed
1056
1057
        assert tokenizer.init_kwargs["random_argument"] is True
        assert new_tokenizer.init_kwargs["random_argument"] is False
1058
1059

    def test_get_vocab(self):
1060
1061
1062
1063
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()
1064

1065
1066
                self.assertIsInstance(vocab, dict)
                self.assertEqual(len(vocab), len(tokenizer))
1067

1068
1069
1070
1071
                tokenizer.add_tokens(["asdfasdfasdfasdf"])
                vocab = tokenizer.get_vocab()
                self.assertIsInstance(vocab, dict)
                self.assertEqual(len(vocab), len(tokenizer))
1072

1073
    def test_conversion_reversible(self):
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()
                for word, ind in vocab.items():
                    self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
                    self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # Test not batched
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0])
                encoded_sequences_2 = tokenizer(sequences[0])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test not batched pairs
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1])
                encoded_sequences_2 = tokenizer(sequences[0], sequences[1])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched
                encoded_sequences_1 = tokenizer.batch_encode_plus(sequences)
                encoded_sequences_2 = tokenizer(sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched pairs
                encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences)))
                encoded_sequences_2 = tokenizer(sequences, sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)
1112
1113
1114

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences]
                encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False)
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

                maximum_length = len(
                    max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
                )

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences_padded = [
                    tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length")
                    for sequence in sequences
                ]

                encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True)
                self.assertListEqual(
                    encoded_sequences_padded,
                    self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
                )

                # check 'longest' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding="longest"
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
                        encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key],
                    )

                # check 'no_padding' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding=False
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
                        encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key],
                    )
1167
1168
1169
1170
1171

    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )
1196
1197

        # Left padding tests
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.padding_side = "left"
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

    def test_pretokenized_inputs(self):
        # Test when inputs are pretokenized

1227
        tokenizers = self.get_tokenizers(do_lower_case=False)  # , add_prefix_space=True)
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

                # Prepare a sequence from our tokenizer vocabulary
                sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20)
                # sequence = " " + sequence  # To be sure the byte-level tokenizers are feeling good
                token_sequence = sequence.split()
                # sequence_no_prefix_space = sequence.strip()

                # Test encode for pretokenized inputs
                output = tokenizer.encode(token_sequence, is_pretokenized=True, add_special_tokens=False)
                output_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)

                output = tokenizer.encode(token_sequence, is_pretokenized=True, add_special_tokens=True)
                output_sequence = tokenizer.encode(sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs
                output = tokenizer.encode_plus(token_sequence, is_pretokenized=True, add_special_tokens=False)
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.encode_plus(token_sequence, is_pretokenized=True, add_special_tokens=True)
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs
                sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()]
                token_sequence_batch = [s.split() for s in sequence_batch]
                sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch]

                output = tokenizer.batch_encode_plus(
                    token_sequence_batch, is_pretokenized=True, add_special_tokens=False
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
                    token_sequence_batch, is_pretokenized=True, add_special_tokens=True
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test encode for pretokenized inputs pairs
                output = tokenizer.encode(
                    token_sequence, token_sequence, is_pretokenized=True, add_special_tokens=False
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)
                output = tokenizer.encode(
                    token_sequence, token_sequence, is_pretokenized=True, add_special_tokens=True
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs pairs
                output = tokenizer.encode_plus(
                    token_sequence, token_sequence, is_pretokenized=True, add_special_tokens=False
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.encode_plus(
                    token_sequence, token_sequence, is_pretokenized=True, add_special_tokens=True
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs pairs
                sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [
                    (sequence.strip() + " " + sequence.strip(), sequence.strip())
                ]
                token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch]
                sequence_pair_batch_cleaned_up_spaces = [
                    tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch
                ]

                output = tokenizer.batch_encode_plus(
                    token_sequence_pair_batch, is_pretokenized=True, add_special_tokens=False
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
                    token_sequence_pair_batch, is_pretokenized=True, add_special_tokens=True
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
1329

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
    def test_prepare_for_model(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            string_sequence = "Testing the prepare_for_model method."
            ids = tokenizer.encode(string_sequence, add_special_tokens=False)
            input_dict = tokenizer.encode_plus(string_sequence)
            prepared_input_dict = tokenizer.prepare_for_model(ids)

            self.assertEqual(input_dict, prepared_input_dict)

1340
1341
1342
    @require_torch
    @require_tf
    def test_batch_encode_plus_tensors(self):
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # A Tensor cannot be build by sequences which are not the same size
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

                if tokenizer.pad_token_id is None:
                    self.assertRaises(
                        ValueError, tokenizer.batch_encode_plus, sequences, padding=True, return_tensors="pt",
                    )
                    self.assertRaises(
                        ValueError, tokenizer.batch_encode_plus, sequences, padding="longest", return_tensors="tf",
                    )
                else:
                    pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt")
                    tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf")
                    encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True)
1367

1368
1369
1370
1371
                    for key in encoded_sequences.keys():
                        pytorch_value = pytorch_tensor[key].tolist()
                        tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                        encoded_value = encoded_sequences[key]
1372

1373
                        self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
1374
1375
1376
1377
1378
1379

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
1380
                    tokenizer.batch_encode_plus(sequences, padding="longest")
1381
                else:
1382
                    tokenizer.encode_plus(sequences, padding=True)
1383
1384
1385

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
1386

1387
    @slow
1388
1389
    @require_torch
    def test_torch_encode_plus_sent_to_model(self):
1390
        import torch
1391
1392
1393
1394
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

1395
1396
1397
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1398

1399
1400
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
1401

1402
1403
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
1404

1405
1406
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
1407

1408
                model = model_class(config)
1409

1410
1411
1412
1413
1414
1415
1416
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
                assert (
                    (model.get_input_embeddings().weight.shape[0] >= len(tokenizer))
                    if is_using_common_embeddings
                    else True
                )
1417

1418
1419
1420
1421
1422
1423
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
                # This should not fail
1424

1425
1426
1427
                with torch.no_grad():  # saves some time
                    model(**encoded_sequence)
                    model(**batch_encoded_sequence)
1428

1429
1430
1431
1432
1433
1434
1435
        # if self.test_rust_tokenizer:
        #     fast_tokenizer = self.get_rust_tokenizer()
        #     encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
        #     batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        #     # This should not fail
        #     model(**encoded_sequence_fast)
        #     model(**batch_encoded_sequence_fast)
1436

1437
    @slow
1438
1439
1440
1441
1442
1443
    @require_tf
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

1444
1445
1446
1447
1448
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
1449

1450
1451
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
1452

1453
1454
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
1455

1456
                model = model_class(config)
1457

1458
1459
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                assert model.config.vocab_size >= len(tokenizer)
1460

1461
1462
1463
1464
1465
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
1466

1467
1468
1469
                # This should not fail
                model(encoded_sequence)
                model(batch_encoded_sequence)
1470
1471

    # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
1472
    @slow
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
    @require_torch
    def test_np_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()
        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

        # TODO: add forward through JAX/Flax when PR is merged
        # This is currently here to make flake8 happy !
        if encoded_sequence is None:
            raise ValueError("Cannot convert list to numpy tensor on  encode_plus()")

        if batch_encoded_sequence is None:
            raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus()")

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

            # TODO: add forward through JAX/Flax when PR is merged
            # This is currently here to make flake8 happy !
            if encoded_sequence_fast is None:
                raise ValueError("Cannot convert list to numpy tensor on  encode_plus() (fast)")

            if batch_encoded_sequence_fast is None:
                raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus() (fast)")