run_summarization.py 25 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2021 The HuggingFace Team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import nltk  # Here to have a nice missing dependency error message early on
28
29
30
31
import numpy as np
from datasets import load_dataset, load_metric

import transformers
32
from filelock import FileLock
33
34
35
36
37
38
39
40
41
42
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
43
from transformers.file_utils import is_offline_mode
44
from transformers.trainer_utils import get_last_checkpoint, is_main_process
45
from transformers.utils import check_min_version
46
47


48
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre's avatar
Lysandre committed
49
check_min_version("4.6.0")
50

51
52
logger = logging.getLogger(__name__)

53
54
try:
    nltk.data.find("tokenizers/punkt")
Stas Bekman's avatar
Stas Bekman committed
55
except (LookupError, OSError):
56
57
58
59
60
61
62
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    summary_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
120
121
122
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
123
124
    validation_file: Optional[str] = field(
        default=None,
125
        metadata={
126
            "help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
127
128
129
130
131
132
            "(a jsonlines or csv file)."
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
133
            "help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
134
        },
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
158
        default=None,
159
160
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
161
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
181
    max_eval_samples: Optional[int] = field(
182
183
        default=None,
        metadata={
184
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
185
186
187
            "value if set."
        },
    )
188
    max_predict_samples: Optional[int] = field(
189
190
        default=None,
        metadata={
191
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
192
193
194
195
196
197
198
199
200
201
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
202
203
204
205
206
207
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
208
209
210
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
211
212
213
214
215
216
217
218
219
220
221

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
222
223
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
224
225
226


summarization_name_mapping = {
227
228
    "amazon_reviews_multi": ("review_body", "review_title"),
    "big_patent": ("description", "abstract"),
229
    "cnn_dailymail": ("article", "highlights"),
230
231
232
233
234
235
    "orange_sum": ("text", "summary"),
    "pn_summary": ("article", "summary"),
    "psc": ("extract_text", "summary_text"),
    "samsum": ("dialogue", "summary"),
    "thaisum": ("body", "summary"),
    "xglue": ("news_body", "news_title"),
236
    "xsum": ("document", "summary"),
237
    "wiki_summary": ("article", "highlights"),
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
}


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

254
255
256
257
258
259
260
261
262
263
264
265
    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

266
267
268
269
270
271
272
273
274
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
275
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
276
277
278
279
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
280
281
282
283
284

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
285
        handlers=[logging.StreamHandler(sys.stdout)],
286
    )
287
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
288
289
290
291
292
293
294
295
296

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
297
    logger.info(f"Training/evaluation parameters {training_args}")
298
299
300
301
302
303
304
305

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
306
307
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
308
309
310
311
312
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
313
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
314
315
316
317
318
319
320
321
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
322
323
324
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
325
        datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

Suraj Patil's avatar
Suraj Patil committed
356
357
    model.resize_token_embeddings(len(tokenizer))

358
359
360
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

361
    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
362

363
364
365
366
    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = datasets["train"].column_names
367
    elif training_args.do_eval:
368
        column_names = datasets["validation"].column_names
369
370
371
372
373
    elif training_args.do_predict:
        column_names = datasets["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return
374

375
376
377
378
    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
    if data_args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
379
    else:
380
381
382
383
384
385
386
387
388
389
390
391
392
        text_column = data_args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = data_args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )
393
394
395
396
397

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

398
    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
399
        logger.warning(
400
401
402
403
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

404
    def preprocess_function(examples):
405
406
        inputs = examples[text_column]
        targets = examples[summary_column]
407
        inputs = [prefix + inp for inp in inputs]
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
425
426
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
427
        train_dataset = datasets["train"]
428
429
430
431
432
433
434
435
436
437
438
439
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
440
441
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
442
        eval_dataset = datasets["validation"]
443
444
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
445
446
447
448
449
450
451
452
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

453
454
    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
455
456
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
457
458
459
460
        predict_dataset = datasets["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
461
462
463
464
465
466
467
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
        )

468
469
    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
470
471
472
473
474
475
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if training_args.fp16 else None,
    )
476
477

    # Metric
478
    metric = load_metric("rouge")
479

480
481
482
483
484
    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
485
486
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
487
488
489

        return preds, labels

490
491
492
493
494
495
496
497
498
499
500
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        # Some simple post-processing
501
        decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
502

503
504
505
        result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
        # Extract a few results from ROUGE
        result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
506
507
508

        prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
        result["gen_len"] = np.mean(prediction_lens)
509
        result = {k: round(v, 4) for k, v in result.items()}
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        return result

    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
    )

    # Training
    if training_args.do_train:
525
526
527
528
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
529
530
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
531
532
        trainer.save_model()  # Saves the tokenizer too for easy upload

533
534
535
536
537
        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
538

539
540
541
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
542
543

    # Evaluation
544
    results = {}
545
546
547
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

548
        metrics = trainer.evaluate(
549
            max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
550
        )
551
552
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
553

554
555
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
556

557
    if training_args.do_predict:
558
        logger.info("*** Predict ***")
559

560
561
562
        predict_results = trainer.predict(
            predict_dataset,
            metric_key_prefix="predict",
563
564
565
            max_length=data_args.val_max_target_length,
            num_beams=data_args.num_beams,
        )
566
567
568
569
570
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
571

572
573
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
574

575
        if trainer.is_world_process_zero():
576
            if training_args.predict_with_generate:
577
578
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
579
                )
580
581
582
583
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w") as writer:
                    writer.write("\n".join(predictions))
584

Sylvain Gugger's avatar
Sylvain Gugger committed
585
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
586
587
588
589
590
591
592
593
594
595
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tags": "summarization"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
596

597
598
    return results

599
600
601
602
603
604
605
606

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()