test_modeling_gpt2.py 40.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import datetime
18
import gc
19
import math
20
21
import unittest

22
23
import pytest

24
from transformers import GPT2Config, is_torch_available
25
26
27
28
29
30
31
32
from transformers.testing_utils import (
    backend_empty_cache,
    require_flash_attn,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)
thomwolf's avatar
thomwolf committed
33

34
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
35
36
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
37
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
38
39


40
if is_torch_available():
41
    import torch
42

43
44
    from transformers import (
        GPT2DoubleHeadsModel,
peter-sk's avatar
peter-sk committed
45
        GPT2ForQuestionAnswering,
46
        GPT2ForSequenceClassification,
47
        GPT2ForTokenClassification,
48
49
        GPT2LMHeadModel,
        GPT2Model,
50
        GPT2Tokenizer,
51
52
    )

53

54
55
56
57
58
59
60
61
62
63
64
65
66
class GPT2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
67
        num_hidden_layers=2,
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
103
104
105
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
106
        self.pad_token_id = vocab_size - 1
107

108
    def get_large_model_config(self):
109
        return GPT2Config.from_pretrained("openai-community/gpt2")
110

111
112
113
    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
114
115
116
117
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
118
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

136
137
138
139
140
        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

156
157
158
    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
159
160
161
162
163
        return GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
164
165
166
167
            n_inner=self.intermediate_size,
            activation_function=self.hidden_act,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
168
169
170
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
171
            use_cache=True,
172
173
174
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
175
176
177
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
178
179
        )

180
181
182
183
184
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

214
215
216
217
218
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
221
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
222

Stas Bekman's avatar
Stas Bekman committed
223
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
224
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
225
226
227
228
229
230
231

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
232
233
234
235
236
237
238
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
239
        output, past = outputs.to_tuple()
240
241
242
243
244
245
246
247
248

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
249
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
250
251
252
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
275
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
276
277
278
279
280
281
282
283
284
285
286
287

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
Lysandre's avatar
Lysandre committed
288
289
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
290
291
292
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
293
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
295
296
297
298
299
300
301
302
303

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

304
305
306
307
308
309
310
311
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
312
        outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)
313
314
315
316
317
318

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
319
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
320
321
322
323

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
324
325
326
327
328
329
330
331
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
        )["last_hidden_state"]
332
333
334
335
336
337
338
339
340
341
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

342
343
344
345
346
    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
347
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
348
349
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
350

351
352
353
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
354
355
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
356
357
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
358
359
360
361
362
363

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def create_and_check_double_lm_head_model(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = GPT2DoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
            "labels": multiple_choice_inputs_ids,
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
383
        result = model(**inputs)
384
        self.parent.assertEqual(result.loss.shape, ())
Stas Bekman's avatar
Stas Bekman committed
385
        self.parent.assertEqual(
386
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
387
        )
Stas Bekman's avatar
Stas Bekman committed
388
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
389

peter-sk's avatar
peter-sk committed
390
391
392
393
394
395
396
397
398
399
400
    def create_and_check_gpt2_for_question_answering(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

401
402
403
404
405
406
407
408
409
410
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

411
412
413
414
415
416
417
418
419
420
    def create_and_check_gpt2_for_token_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForTokenClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

421
422
423
424
425
426
427
428
    def create_and_check_gpt2_weight_initialization(self, config, *args):
        model = GPT2Model(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def create_and_check_cached_forward_with_and_without_attention_mask(self, config, input_ids, *args):
        # Relevant issue: https://github.com/huggingface/transformers/issues/31943
        model = GPT2Model(config)
        model.to(torch_device)
        model.eval()

        # We want this for SDPA, eager works with a `None` attention mask
        assert (
            model.config._attn_implementation == "sdpa"
        ), "This test assumes the model to have the SDPA implementation for its attention calculations."

        # Prepare cache and non_cache input, needs a full attention mask
        cached_len = input_ids.shape[-1] // 2
        input_mask = torch.ones(size=input_ids.size()).to(torch_device)
        cache_inputs = {"input_ids": input_ids[:, :cached_len], "attention_mask": input_mask[:, :cached_len]}
        non_cache_inputs = {"input_ids": input_ids[:, cached_len:], "attention_mask": input_mask}

        # Cached forward once with the attention mask provided and the other time without it (which should assume full attention)
        cache_outputs = model(**cache_inputs)
        full_outputs_with_attention_mask = model(
            **non_cache_inputs, past_key_values=cache_outputs.past_key_values
        ).last_hidden_state
        full_outputs_without_attention_mask = model(
            non_cache_inputs["input_ids"], past_key_values=cache_outputs.past_key_values
        ).last_hidden_state

        self.parent.assertTrue(
            torch.allclose(full_outputs_with_attention_mask, full_outputs_without_attention_mask, atol=1e-5)
        )

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


483
@require_torch
484
class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
485
    all_model_classes = (
peter-sk's avatar
peter-sk committed
486
487
488
489
490
491
492
493
        (
            GPT2Model,
            GPT2LMHeadModel,
            GPT2DoubleHeadsModel,
            GPT2ForQuestionAnswering,
            GPT2ForSequenceClassification,
            GPT2ForTokenClassification,
        )
494
495
496
497
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
498
499
500
    pipeline_model_mapping = (
        {
            "feature-extraction": GPT2Model,
peter-sk's avatar
peter-sk committed
501
            "question-answering": GPT2ForQuestionAnswering,
502
503
504
505
506
507
508
509
            "text-classification": GPT2ForSequenceClassification,
            "text-generation": GPT2LMHeadModel,
            "token-classification": GPT2ForTokenClassification,
            "zero-shot": GPT2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
510
    all_parallelizable_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
511
    fx_compatible = True
512
    test_missing_keys = False
513
    test_model_parallel = True
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "GPT2DoubleHeadsModel":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["input_ids"] = inputs_dict["labels"]
                inputs_dict["token_type_ids"] = inputs_dict["labels"]
                inputs_dict["mc_token_ids"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["mc_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

538
    def setUp(self):
539
        self.model_tester = GPT2ModelTester(self)
540
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
541

542
543
544
545
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
546
        backend_empty_cache(torch_device)
547

thomwolf's avatar
thomwolf committed
548
    def test_config(self):
549
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
550

551
552
553
    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
554

555
556
557
558
559
560
561
562
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

563
564
565
566
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

567
568
569
570
571
572
573
    def test_gpt2_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt2_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
574

peter-sk's avatar
peter-sk committed
575
576
577
578
    def test_gpt2_question_answering_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_question_answering(*config_and_inputs)

579
580
581
582
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

583
584
585
586
    def test_gpt2_token_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_token_classification(*config_and_inputs)

587
    def test_gpt2_gradient_checkpointing(self):
588
589
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
590

591
592
593
594
595
596
597
598
599
600
601
602
    def test_gpt2_scale_attn_by_inverse_layer_idx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(scale_attn_by_inverse_layer_idx=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_reorder_and_upcast_attn(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(reorder_and_upcast_attn=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_weight_initialization(*config_and_inputs)

603
604
605
606
    def test_cached_forward_with_and_without_attention_mask(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_cached_forward_with_and_without_attention_mask(*config_and_inputs)

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

625
626
    @slow
    def test_batch_generation(self):
627
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
628
        model.to(torch_device)
629
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
630
631
632
633
634
635
636
637
638
639
640
641
642
643

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
            token_type_ids=token_type_ids,
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_batch_generation_2heads(self):
686
        model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
687
        model.to(torch_device)
688
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

        tokenizer.padding_side = "left"

        # This tokenizer has no pad token, so we have to set it in some way
        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )
712
713

        outputs = model.generate(
714
715
716
717
718
719
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
720
            attention_mask=inputs["attention_mask"].to(torch_device),
721
            token_type_ids=token_type_ids,
722
723
724
725
726
727
728
729
730
731
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
732
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
733
734
735
736
737
738
739
740
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
741
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
742
743
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

744
    @slow
745
    def test_model_from_pretrained(self):
746
747
748
        model_name = "openai-community/gpt2"
        model = GPT2Model.from_pretrained(model_name)
        self.assertIsNotNone(model)
749
750


751
@require_torch
752
class GPT2ModelLanguageGenerationTest(unittest.TestCase):
753
754
755
756
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
757
        backend_empty_cache(torch_device)
758

759
760
761
762
763
764
765
766
    def _test_lm_generate_gpt2_helper(
        self,
        gradient_checkpointing=False,
        reorder_and_upcast_attn=False,
        scale_attn_by_inverse_layer_idx=False,
        verify_outputs=True,
    ):
        model = GPT2LMHeadModel.from_pretrained(
767
            "openai-community/gpt2",
768
769
770
771
772
773
774
775
            reorder_and_upcast_attn=reorder_and_upcast_attn,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
        )
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        else:
            model.gradient_checkpointing_disable()
        model.to(torch_device)
Matt's avatar
Matt committed
776
777
778
779
780

        # The dog
        input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)

        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
781
        expected_output_ids = [464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290,]  # fmt: skip
782
783
784
785
        output_ids = model.generate(input_ids, do_sample=False)
        if verify_outputs:
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

786
787
    @slow
    def test_lm_generate_gpt2(self):
788
789
790
791
792
793
794
795
796
797
798
799
800
        self._test_lm_generate_gpt2_helper()

    @slow
    def test_lm_generate_gpt2_with_gradient_checkpointing(self):
        self._test_lm_generate_gpt2_helper(gradient_checkpointing=True)

    @slow
    def test_lm_generate_gpt2_with_reorder_and_upcast_attn(self):
        self._test_lm_generate_gpt2_helper(reorder_and_upcast_attn=True)

    @slow
    def test_lm_generate_gpt2_with_scale_attn_by_inverse_layer_idx(self):
        self._test_lm_generate_gpt2_helper(scale_attn_by_inverse_layer_idx=True, verify_outputs=False)
801
802

    @slow
803
    def test_gpt2_sample(self):
804
805
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
806
        model.to(torch_device)
807
808

        torch.manual_seed(0)
809
810
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
811
812
813
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

814
815
816
817
818
819
820
821
        token_type_ids = tokenized.token_type_ids.to(torch_device)
        output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
        output_seq_tt = model.generate(
            input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
        )
        output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
        output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)

822
823
824
825
        EXPECTED_OUTPUT_STR = (
            "Today is a nice day and if you don't know anything about the state of play during your holiday"
        )
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
826
        self.assertTrue(
827
            all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
828
        )  # token_type_ids should change output
829
830
831

    @slow
    def test_gpt2_sample_max_time(self):
832
833
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.5

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
869
870
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
871
872
873
874
875
876
877
878

    @slow
    def test_contrastive_search_gpt2(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

879
880
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2-large")
        gpt2_model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large").to(torch_device)
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = gpt2_model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
            ],
        )
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_left(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        model = GPT2LMHeadModel.from_pretrained("gpt2", torch_dtype=torch.float16).to(0)

        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        texts = ["hi", "Hello this is a very long sentence"]

        tokenizer.padding_side = "left"
        tokenizer.pad_token = tokenizer.eos_token

        inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)

        output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_native = tokenizer.batch_decode(output_native)

        model = GPT2LMHeadModel.from_pretrained(
            "gpt2", device_map={"": 0}, attn_implementation="flash_attention_2", torch_dtype=torch.float16
        )

        output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_fa_2 = tokenizer.batch_decode(output_fa_2)

        expected_output = [
            "<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>hi, who was born in the city of Kolkata, was a member of the Kolkata",
            "Hello this is a very long sentence. I'm sorry. I'm sorry. I'm sorry. I'm sorry. I'm sorry",
        ]

        self.assertListEqual(output_native, output_fa_2)
        self.assertListEqual(output_native, expected_output)