test_pipelines_image_segmentation.py 21.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
24
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
25
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
27
28
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
29
    AutoModelForInstanceSegmentation,
30
    DetrForSegmentation,
31
    ImageSegmentationPipeline,
32
    MaskFormerForInstanceSegmentation,
33
34
35
    is_vision_available,
    pipeline,
)
36
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
37
38
39
40
41
42
43
44
45
46
47
48
49
50

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


51
52
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
53
54
55
56
57
58
59
60
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
61
62


63
64
65
66
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
67
68
69
70
71
72
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
73
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
74
    }
75

76
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
77
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
78
79
80
81
82
83
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
84
85
86
87
88
89
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
90
91
        self.assertIsInstance(outputs, list)
        n = len(outputs)
92
93
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
94
95
96
97
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
98
99
100
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
101

102
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
103

104
        # RGBA
105
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
106
107
108
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
109
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
110
111
112
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
113
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
114
115
116
117
118
119
120
121
122
123
124
125
126
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
127
        batch = [
128
129
130
131
132
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
133
        ]
134
135
136
        outputs = image_segmenter(
            batch, threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0, batch_size=batch_size
        )
137
        self.assertEqual(len(batch), len(outputs))
138
        self.assertEqual(len(outputs[0]), n)
139
140
        self.assertEqual(
            [
141
142
143
144
145
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
146
            ],
147
148
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
149
150
151
152
153
154
155
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

179
180
    @require_torch
    def test_small_model_pt(self):
181
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
182
183
184

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
185
186
187
        image_segmenter = ImageSegmentationPipeline(
            model=model,
            feature_extractor=feature_extractor,
188
189
190
191
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
192
193
        )

194
195
196
197
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

198
        # Shortening by hashing
199
        for o in outputs:
200
            o["mask"] = mask_to_test_readable(o["mask"])
201

202
        # This is extremely brittle, and those values are made specific for the CI.
203
204
205
206
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
207
                    "score": 0.004,
208
                    "label": "LABEL_215",
209
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
210
                },
211
            ],
212
213
214
215
216
217
218
219
220
221
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
222
                o["mask"] = mask_to_test_readable(o["mask"])
223
224
225
226
227
228

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
229
                        "score": 0.004,
230
                        "label": "LABEL_215",
231
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
232
233
234
235
                    },
                ],
                [
                    {
236
                        "score": 0.004,
237
                        "label": "LABEL_215",
238
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
239
                    },
240
                ],
241
242
243
            ],
        )

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
                    "mask": {"hash": "7f0bf661a4", "shape": (480, 640), "white_pixels": 3},
                    "score": None,
                },
                {
                    "label": "LABEL_101",
                    "mask": {"hash": "10ab738dc9", "shape": (480, 640), "white_pixels": 8948},
                    "score": None,
                },
                {
                    "label": "LABEL_215",
                    "mask": {"hash": "b431e0946c", "shape": (480, 640), "white_pixels": 298249},
                    "score": None,
                },
            ],
        )

286
287
288
289
290
291
292
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
293
            o["mask"] = mask_to_test_readable(o["mask"])
294
295
296
297

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
298
299
300
301
302
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
303
304
305
                {
                    "score": None,
                    "label": "LABEL_1",
306
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
307
308
309
310
                },
            ],
        )

311
312
313
314
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
315
316
317
318
319
320
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
321

322
323
324
325
326
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
327
        for o in outputs:
328
            o["mask"] = mask_to_test_readable(o["mask"])
329
330
331
332

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
363
364
365
366
367
368
369
370
371
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
372
373

        # Shortening by hashing
374
375
        for output in outputs:
            for o in output:
376
                o["mask"] = mask_to_test_readable(o["mask"])
377
378
379
380
381

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
412
413
                ],
                [
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
444
445
446
447
448
449
450
451
452
453
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

454
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
455
456
        # Shortening by hashing
        for o in outputs:
457
            o["mask"] = mask_to_test_readable(o["mask"])
458
459
460
461

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
462
463
464
465
466
467
468
469
470
471
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
472
473
474
            ],
        )

475
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
476
477

        for o in outputs:
478
            o["mask"] = mask_to_test_readable(o["mask"])
479
480
481
482

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
508
509
            ],
        )
510
511
512
513

    @require_torch
    @slow
    def test_maskformer(self):
514
        threshold = 0.8
515
516
        model_id = "facebook/maskformer-swin-base-ade"

517
518
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
519
520
521
522

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
523
        file = image[0]["file"]
524
        outputs = image_segmenter(file, threshold=threshold)
525

526
        # Shortening by hashing
527
        for o in outputs:
528
            o["mask"] = mask_to_test_readable(o["mask"])
529
530
531
532

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
568
569
            ],
        )