"tests/test_tokenization_transfo_xl.py" did not exist on "31c23bd5ee26425a67f92fc170789656379252a6"
test_tokenization_fast.py 29.5 KB
Newer Older
1
import logging
2
import unittest
Funtowicz Morgan's avatar
Funtowicz Morgan committed
3
4
from collections import namedtuple
from itertools import takewhile
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

from tests.utils import require_torch
from transformers import (
    BertTokenizer,
    BertTokenizerFast,
    DistilBertTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    OpenAIGPTTokenizer,
    PreTrainedTokenizer,
    RobertaTokenizer,
    TransfoXLTokenizer,
    is_torch_available,
)
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast


25
26
27
28
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
29
30
31
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]
Tokenizer = namedtuple("Tokenizer", ["name", "rust_cls", "python_cls", "vocab_key", "filter"])

32

Funtowicz Morgan's avatar
Funtowicz Morgan committed
33
34
35
def filter_non_english(_: Tokenizer, pretrained_name: str):
    """ Filter all the model for non-english language """
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])
36
37


Funtowicz Morgan's avatar
Funtowicz Morgan committed
38
39
def filter_roberta_detectors(_: Tokenizer, pretrained_name: str):
    return "detector" not in pretrained_name
40
41


Funtowicz Morgan's avatar
Funtowicz Morgan committed
42
class CommonFastTokenizerTest(unittest.TestCase):
43

Funtowicz Morgan's avatar
Funtowicz Morgan committed
44
45
46
47
48
    TOKENIZERS_CLASSES = frozenset([])

    def setUp(self) -> None:
        with open("tests/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
49

Funtowicz Morgan's avatar
Funtowicz Morgan committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    def test_all_tokenizers(self):
        for tok_case in self.TOKENIZERS_CLASSES:
            for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys():

                # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
                # information available in Tokenizer (name, rust class, python class, vocab key name)
                if tok_case.filter is None or (
                    tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name)
                ):
                    with self.subTest("{} ({})".format(tok_case.name, pretrained_name)):
                        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name)
                        tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name)

                        self.fast_align_python(tokenizer_r, tokenizer_p)
                        self.fast_only(tokenizer_r)

    def fast_align_python(self, tokenizer_r, tokenizer_p):
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)
78
        self.assert_create_token_type_ids(tokenizer_r, tokenizer_p)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
79
80
81
82
83
84
85
86
87
88
89
90
91
        # TODO: enable for v3.0.0
        # self.assert_empty_output_no_special_tokens(tokenizer_r, tokenizer_p)

    def fast_only(self, tokenizer_r):
        # Ensure None raise an error
        self.assertRaises(ValueError, tokenizer_r.tokenize, None)
        self.assertRaises(ValueError, tokenizer_r.encode, None)
        self.assertRaises(ValueError, tokenizer_r.encode_plus, None)
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, None)

        self.assert_add_tokens(tokenizer_r)
        self.assert_offsets_mapping(tokenizer_r)
        self.assert_add_special_tokens(tokenizer_r)
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        self.assert_alignement_methods(tokenizer_r)

    def assert_alignement_methods(self, tokenizer_r):
        words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
        text = " ".join(words)
        batch_size = 3

        encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

        batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
        num_tokens = len(encoding["input_ids"])

        last_word_index = len(words) - 1
        last_token_index = num_tokens - 1
        last_batch_index = batch_size - 1
        last_char_index = len(text) - 1

        # words, tokens
        self.assertEqual(len(encoding.words(0)), num_tokens)
        self.assertEqual(max(encoding.words(0)), last_word_index)
        self.assertEqual(min(encoding.words(0)), 0)
        self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
        self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
        self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
        self.assertEqual(len(encoding.tokens(0)), num_tokens)

        # Assert token_to_word
        self.assertEqual(encoding.token_to_word(0), 0)
        self.assertEqual(encoding.token_to_word(0, 0), 0)
        self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
        self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

        # Assert word_to_tokens
        self.assertEqual(encoding.word_to_tokens(0).start, 0)
        self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
        self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
        self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1)

        # Assert token_to_chars
        self.assertEqual(encoding.token_to_chars(0).start, 0)
        self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
        self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1)

        # Assert char_to_token
        self.assertEqual(encoding.char_to_token(0), 0)
        self.assertEqual(encoding.char_to_token(0, 0), 0)
        self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
        self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

        # Assert char_to_word
        self.assertEqual(encoding.char_to_word(0), 0)
        self.assertEqual(encoding.char_to_word(0, 0), 0)
        self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
        self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

        # Assert word_to_chars
        self.assertEqual(encoding.word_to_chars(0).start, 0)
        self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
        self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
171
172

    def assert_tokenization_python_rust_equals(self, tokenizer_p, tokenizer_r):
173
174
175
176
177
        # Ensure basic input match
        input_p = tokenizer_p.encode_plus(self._data)
        input_r = tokenizer_r.encode_plus(self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
178
            self.assertSequenceEqual(input_p[key], input_r[key])
179
180
181
182
183

        input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
        input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
184
            self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
185
186
187
188
189
190

        # Ensure truncation match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
191
            self.assertSequenceEqual(input_p[key], input_r[key])
192
193
194
195
196
197

        # Ensure truncation with stride match
        input_p = tokenizer_p.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512, stride=3, return_overflowing_tokens=True)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            self.assertSequenceEqual(input_p[key], input_r[key])

    def assert_num_special_tokens_to_add_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True))

    def assert_max_length_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
        self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def assert_special_tokens_map_equal(self, tokenizer_r, tokenizer_p):
        # Assert the set of special tokens match.
        self.assertSequenceEqual(
            tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(),
214
215
        )

216
217
218
219
220
221
222
223
    def assert_add_tokens(self, tokenizer_r):
        vocab_size = tokenizer_r.vocab_size
        self.assertEqual(tokenizer_r.add_tokens(""), 0)
        self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
        self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
        self.assertEqual(len(tokenizer_r), vocab_size + 3)

        self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
224
        self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
225
226
227
228
229
230
231
        self.assertRaises(
            AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
        )
        self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
        self.assertEqual(
            tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
        )
232
        self.assertEqual(len(tokenizer_r), vocab_size + 8)
233

Funtowicz Morgan's avatar
Funtowicz Morgan committed
234
    def assert_offsets_mapping(self, tokenizer_r):
235
236
237
238
        text = "Wonderful no inspiration example with subtoken"
        pair = "Along with an awesome pair"

        # No pair
Funtowicz Morgan's avatar
Funtowicz Morgan committed
239
240
241
242
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
        )
        added_tokens = tokenizer_r.num_special_tokens_to_add(False)
243
244
245
246
247
248
249
250
251
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

        # Pairs
Funtowicz Morgan's avatar
Funtowicz Morgan committed
252
253
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
254
        )
Funtowicz Morgan's avatar
Funtowicz Morgan committed
255
        added_tokens = tokenizer_r.num_special_tokens_to_add(True)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        returned_tensor = "pt" if is_torch_available() else "tf"

        tokens = tokenizer.encode_plus(
            "HuggingFace is solving NLP one commit at a time",
            max_length=6,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)

        # Mono sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

        # Multi sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
            max_length=6,
            pad_to_max_len=True,
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def assert_create_token_type_ids(self, tokenizer_r, tokenizer_p):
        input_simple = [1, 2, 3]
        input_pair = [1, 2, 3]

        # Generate output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p):
        # Input string
        input_simple = tokenizer_p.tokenize("This is a sample input")
        input_pair = tokenizer_p.tokenize("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

        # Input tokens id
        input_simple = tokenizer_p.encode("This is a sample input")
        input_pair = tokenizer_p.encode("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
356
357
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        def assert_padded_input_match(input_r: list, input_p: list, max_length: int):
358

Funtowicz Morgan's avatar
Funtowicz Morgan committed
359
360
            # Ensure we match max_length
            self.assertEqual(len(input_r), max_length), self.assertEqual(len(input_p), max_length)
361

Funtowicz Morgan's avatar
Funtowicz Morgan committed
362
363
364
365
            # Ensure the number of padded tokens is the same
            padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r)))
            padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p)))
            self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)
366

Funtowicz Morgan's avatar
Funtowicz Morgan committed
367
368
369
370
        def assert_batch_padded_input_match(input_r: dict, input_p: dict):
            for i_r in input_r.values():
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), 15), self.assertEqual(len(i_r[1]), 15)
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), 15), self.assertEqual(len(i_r[1]), 15)
371

Funtowicz Morgan's avatar
Funtowicz Morgan committed
372
373
            for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]):
                assert_padded_input_match(i_r, i_p, max_length)
374

Funtowicz Morgan's avatar
Funtowicz Morgan committed
375
376
            for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
                self.assertSequenceEqual(i_r, i_p)
377

Funtowicz Morgan's avatar
Funtowicz Morgan committed
378
379
380
381
        # Simple input
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r, input_p, max_length)
382

Funtowicz Morgan's avatar
Funtowicz Morgan committed
383
384
385
386
387
388
389
390
        # Pair input
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r, input_p, max_length)
391

Funtowicz Morgan's avatar
Funtowicz Morgan committed
392
393
394
395
396
        # Simple input
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
397

Funtowicz Morgan's avatar
Funtowicz Morgan committed
398
399
400
401
402
403
404
405
406
        # Pair input
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
407

Funtowicz Morgan's avatar
Funtowicz Morgan committed
408
409
410
411
412
413
414
415
        # Simple input
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        assert_batch_padded_input_match(input_r, input_p)
416

Funtowicz Morgan's avatar
Funtowicz Morgan committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        # Pair input
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=15,
            pad_to_max_length=True,
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=15,
            pad_to_max_length=True,
        )
        assert_batch_padded_input_match(input_r, input_p)
435

Funtowicz Morgan's avatar
Funtowicz Morgan committed
436
437
438
    def assert_save_pretrained(self, tokenizer_r, tokenizer_p):
        # Checks it save with the same files
        self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary("."))
439

Funtowicz Morgan's avatar
Funtowicz Morgan committed
440
441
        # Checks everything loads correctly in the same way
        tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".")
442

Funtowicz Morgan's avatar
Funtowicz Morgan committed
443
444
445
446
447
        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer_pp.special_tokens_map:
            self.assertTrue(hasattr(tokenizer_rp, key))
            # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
            # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
448

Funtowicz Morgan's avatar
Funtowicz Morgan committed
449
450
451
452
453
454
455
456
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
        tokens_p = tokenizer_p.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
457

Funtowicz Morgan's avatar
Funtowicz Morgan committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        for key in tokens_p.keys():
            self.assertEqual(tokens_r[key], tokens_p[key])

        self.assertEqual(sum(tokens_r["token_type_ids"]), 0)
        self.assertEqual(sum(tokens_p["token_type_ids"]), 0)

        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
        self.assertSequenceEqual(tokens_r, tokens_p)

    def assert_add_special_tokens(self, tokenizer_r):
        simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
        # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

        for text in ["", " "]:
            # tokenize()
            no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode()
            no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode_plus()
            no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
            for key in no_special_tokens.keys():
                self.assertEqual(
                    len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add
                )

            # # batch_encode_plus
            no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
            with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
            for key in no_special_tokens.keys():
                for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                    self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)


class WordPieceFastTokenizerTest(CommonFastTokenizerTest):
    """
    Override all the specific methods to test WordPiece behavior
    """

    TOKENIZERS_CLASSES = frozenset(
        [
            Tokenizer("Bert", BertTokenizerFast, BertTokenizer, "vocab_file", filter_non_english),
            Tokenizer("DistilBert", DistilBertTokenizerFast, DistilBertTokenizer, "vocab_file", filter_non_english),
        ]
    )

    def fast_only(self, tokenizer_r):
        super().fast_only(tokenizer_r)
        self.assert_offsets_with_special_characters(tokenizer_r)

    def assert_add_special_tokens(self, tokenizer_r):
        super().assert_add_special_tokens(tokenizer_r)

    def assert_offsets_with_special_characters(self, tokenizer_r):
        sentence = "A, na茂ve [MASK] AllenNLP sentence."
        tokens = tokenizer_r.encode_plus(
            sentence,
            return_attention_mask=False,
            return_token_type_ids=False,
            return_offsets_mapping=True,
            add_special_tokens=True,
        )
527

Funtowicz Morgan's avatar
Funtowicz Morgan committed
528
529
530
531
532
533
534
535
536
537
538
        expected_results = [
            ((0, 1), "A"),
            ((1, 2), ","),
            ((3, 8), "naive"),  # BERT normalizes this away
            # Append MASK here after lower-casing
            ((16, 21), "Allen"),
            ((22, 24), "##NL"),
            ((24, 25), "##P"),
            ((26, 34), "sentence"),
            ((35, 36), "."),
        ]
539

Funtowicz Morgan's avatar
Funtowicz Morgan committed
540
541
542
        # Check if the tokenizer is uncased
        if tokenizer_r.init_kwargs.get("do_lower_case"):
            expected_results = [(offset, token.lower()) for (offset, token) in expected_results]
543

Funtowicz Morgan's avatar
Funtowicz Morgan committed
544
545
546
547
        # Append the special tokens
        expected_results.insert(3, ((9, 15), "[MASK]"))
        expected_results.insert(0, (None, "[CLS]"))
        expected_results.append((None, "[SEP]"))
548

Funtowicz Morgan's avatar
Funtowicz Morgan committed
549
550
        self.assertEqual([e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
        # self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
551
552


Funtowicz Morgan's avatar
Funtowicz Morgan committed
553
554
555
556
class RobertaFastTokenizerTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = frozenset(
        [Tokenizer("Roberta", RobertaTokenizerFast, RobertaTokenizer, "vocab_file", filter_roberta_detectors)]
    )
557

Funtowicz Morgan's avatar
Funtowicz Morgan committed
558
559
560
561
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
        tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
562

Funtowicz Morgan's avatar
Funtowicz Morgan committed
563
564
565
        # Rust correctly handles the space before the mask while python doesnt
        self.assertSequenceEqual(tokens_r["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
        self.assertSequenceEqual(tokens_p["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
566

Funtowicz Morgan's avatar
Funtowicz Morgan committed
567
568
        # token_type_ids should put 0 everywhere
        self.assertEquals(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
569

Funtowicz Morgan's avatar
Funtowicz Morgan committed
570
571
572
573
574
        # attention_mask should put 1 everywhere, so sum over length should be 1
        self.assertEquals(
            sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
            sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
        )
575

Funtowicz Morgan's avatar
Funtowicz Morgan committed
576
577
578
        # Rust should have '臓' before <mask> which should be left as an entire token
        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        self.assertSequenceEqual(tokens_r, ["<s>", "臓A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"])
579

580

Funtowicz Morgan's avatar
Funtowicz Morgan committed
581
582
583
584
585
class NoPaddingTokenFastTokenizerMatchingTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = [
        Tokenizer("OpenAI GPT", OpenAIGPTTokenizerFast, OpenAIGPTTokenizer, "vocab_file", None),
        Tokenizer("GPT2", GPT2TokenizerFast, GPT2Tokenizer, "vocab_file", None),
    ]
586

Funtowicz Morgan's avatar
Funtowicz Morgan committed
587
588
589
590
591
592
593
594
595
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input 1", "This is a simple input 2"),
            ("This is a simple pair 1", "This is a simple pair 2"),
        ]
596

Funtowicz Morgan's avatar
Funtowicz Morgan committed
597
598
        # Simple input tests
        self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, pad_to_max_length=True)
599

Funtowicz Morgan's avatar
Funtowicz Morgan committed
600
601
        # Simple input
        self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, pad_to_max_length=True)
602

Funtowicz Morgan's avatar
Funtowicz Morgan committed
603
604
        # Simple input
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, pad_to_max_length=True)
605

Funtowicz Morgan's avatar
Funtowicz Morgan committed
606
607
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, pad_to_max_length=True)
608

Funtowicz Morgan's avatar
Funtowicz Morgan committed
609
610
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, pad_to_max_length=True)
611

Funtowicz Morgan's avatar
Funtowicz Morgan committed
612
613
        # Pair input
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, pad_to_max_length=True)
614

615

Funtowicz Morgan's avatar
Funtowicz Morgan committed
616
617
618
619
class TransfoXLFastTokenizerTest(NoPaddingTokenFastTokenizerMatchingTest):
    TOKENIZERS_CLASSES = frozenset(
        [Tokenizer("TransfoXL", TransfoXLTokenizerFast, TransfoXLTokenizer, "pretrained_vocab_file", None)]
    )
620

Funtowicz Morgan's avatar
Funtowicz Morgan committed
621
622
623
    @require_torch
    def test_all_tokenizers(self):
        super().test_all_tokenizers()