trainer.rst 34.7 KB
Newer Older
1
..
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
    Copyright 2020 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

Sylvain Gugger's avatar
Sylvain Gugger committed
13
14
15
16
17
18
Trainer
-----------------------------------------------------------------------------------------------------------------------

The :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` classes provide an API for feature-complete
training in most standard use cases. It's used in most of the :doc:`example scripts <../examples>`.

Sylvain Gugger's avatar
Sylvain Gugger committed
19
Before instantiating your :class:`~transformers.Trainer`/:class:`~transformers.TFTrainer`, create a
Sylvain Gugger's avatar
Sylvain Gugger committed
20
21
22
23
24
25
26
27
28
29
:class:`~transformers.TrainingArguments`/:class:`~transformers.TFTrainingArguments` to access all the points of
customization during training.

The API supports distributed training on multiple GPUs/TPUs, mixed precision through `NVIDIA Apex
<https://github.com/NVIDIA/apex>`__ for PyTorch and :obj:`tf.keras.mixed_precision` for TensorFlow.

Both :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` contain the basic training loop supporting the
previous features. To inject custom behavior you can subclass them and override the following methods:

- **get_train_dataloader**/**get_train_tfdataset** -- Creates the training DataLoader (PyTorch) or TF Dataset.
Tiger's avatar
Tiger committed
30
- **get_eval_dataloader**/**get_eval_tfdataset** -- Creates the evaluation DataLoader (PyTorch) or TF Dataset.
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
- **get_test_dataloader**/**get_test_tfdataset** -- Creates the test DataLoader (PyTorch) or TF Dataset.
- **log** -- Logs information on the various objects watching training.
- **create_optimizer_and_scheduler** -- Setups the optimizer and learning rate scheduler if they were not passed at
  init.
- **compute_loss** - Computes the loss on a batch of training inputs.
- **training_step** -- Performs a training step.
- **prediction_step** -- Performs an evaluation/test step.
- **run_model** (TensorFlow only) -- Basic pass through the model.
- **evaluate** -- Runs an evaluation loop and returns metrics.
- **predict** -- Returns predictions (with metrics if labels are available) on a test set.

Here is an example of how to customize :class:`~transformers.Trainer` using a custom loss function:

.. code-block:: python

    from transformers import Trainer
    class MyTrainer(Trainer):
        def compute_loss(self, model, inputs):
            labels = inputs.pop("labels")
Chengxi Guo's avatar
Chengxi Guo committed
50
            outputs = model(**inputs)
Sylvain Gugger's avatar
Sylvain Gugger committed
51
52
53
            logits = outputs[0]
            return my_custom_loss(logits, labels)

Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
Another way to customize the training loop behavior for the PyTorch :class:`~transformers.Trainer` is to use
:doc:`callbacks <callback>` that can inspect the training loop state (for progress reporting, logging on TensorBoard or
other ML platforms...) and take decisions (like early stopping).

Sylvain Gugger's avatar
Sylvain Gugger committed
58
59
60
61
62
63
64

Trainer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Trainer
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
65

Sylvain Gugger's avatar
Sylvain Gugger committed
66
67
68
69
70
71
72
Seq2SeqTrainer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Seq2SeqTrainer
    :members: evaluate, predict


Sylvain Gugger's avatar
Sylvain Gugger committed
73
74
75
76
77
78
TFTrainer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFTrainer
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
79

Sylvain Gugger's avatar
Sylvain Gugger committed
80
81
82
83
84
85
TrainingArguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TrainingArguments
    :members:

Sylvain Gugger's avatar
Sylvain Gugger committed
86

Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
90
91
92
93
Seq2SeqTrainingArguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Seq2SeqTrainingArguments
    :members:


Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
97
98
TFTrainingArguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFTrainingArguments
    :members:
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115


Trainer Integrations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The :class:`~transformers.Trainer` has been extended to support libraries that may dramatically improve your training
time and fit much bigger models.

Currently it supports third party solutions, `DeepSpeed <https://github.com/microsoft/DeepSpeed>`__ and `FairScale
<https://github.com/facebookresearch/fairscale/>`__, which implement parts of the paper `ZeRO: Memory Optimizations
Toward Training Trillion Parameter Models, by Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He
<https://arxiv.org/abs/1910.02054>`__.

This provided support is new and experimental as of this writing.

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
Installation Notes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

As of this writing, both FairScale and Deepspeed require compilation of CUDA C++ code, before they can be used.

While all installation issues should be dealt with through the corresponding GitHub Issues of `FairScale
<https://github.com/facebookresearch/fairscale/issues>`__ and `Deepspeed
<https://github.com/microsoft/DeepSpeed/issues>`__, there are a few common issues that one may encounter while building
any PyTorch extension that needs to build CUDA extensions.

Therefore, if you encounter a CUDA-related build issue while doing one of the following or both:

.. code-block:: bash

    pip install fairscale
    pip install deepspeed

please, read the following notes first.

In these notes we give examples for what to do when ``pytorch`` has been built with CUDA ``10.2``. If your situation is
different remember to adjust the version number to the one you are after.

**Possible problem #1:**

While, Pytorch comes with its own CUDA toolkit, to build these two projects you must have an identical version of CUDA
installed system-wide.

For example, if you installed ``pytorch`` with ``cudatoolkit==10.2`` in the Python environment, you also need to have
CUDA ``10.2`` installed system-wide.

The exact location may vary from system to system, but ``/usr/local/cuda-10.2`` is the most common location on many
Unix systems. When CUDA is correctly set up and added to the ``PATH`` environment variable, one can find the
installation location by doing:

.. code-block:: bash

    which nvcc

If you don't have CUDA installed system-wide, install it first. You will find the instructions by using your favorite
search engine. For example, if you're on Ubuntu you may want to search for: `ubuntu cuda 10.2 install
<https://www.google.com/search?q=ubuntu+cuda+10.2+install>`__.

**Possible problem #2:**

Another possible common problem is that you may have more than one CUDA toolkit installed system-wide. For example you
may have:

.. code-block:: bash

    /usr/local/cuda-10.2
    /usr/local/cuda-11.0

Now, in this situation you need to make sure that your ``PATH`` and ``LD_LIBRARY_PATH`` environment variables contain
the correct paths to the desired CUDA version. Typically, package installers will set these to contain whatever the
last version was installed. If you encounter the problem, where the package build fails because it can't find the right
CUDA version despite you having it installed system-wide, it means that you need to adjust the 2 aforementioned
environment variables.

First, you may look at their contents:

.. code-block:: bash

    echo $PATH
    echo $LD_LIBRARY_PATH

so you get an idea of what is inside.

It's possible that ``LD_LIBRARY_PATH`` is empty.

``PATH`` lists the locations of where executables can be found and ``LD_LIBRARY_PATH`` is for where shared libraries
are to looked for. In both cases, earlier entries have priority over the later ones. ``:`` is used to separate multiple
entries.

Now, to tell the build program where to find the specific CUDA toolkit, insert the desired paths to be listed first by
doing:

.. code-block:: bash

    export PATH=/usr/local/cuda-10.2/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH

Note that we aren't overwriting the existing values, but prepending instead.

Of course, adjust the version number, the full path if need be. Check that the directories you assign actually do
exist. ``lib64`` sub-directory is where the various CUDA ``.so`` objects, like ``libcudart.so`` reside, it's unlikely
that your system will have it named differently, but if it is adjust it to reflect your reality.


**Possible problem #3:**

Some older CUDA versions may refuse to build with newer compilers. For example, you my have ``gcc-9`` but it wants
``gcc-7``.

There are various ways to go about it.

If you can install the latest CUDA toolkit it typically should support the newer compiler.

Alternatively, you could install the lower version of the compiler in addition to the one you already have, or you may
already have it but it's not the default one, so the build system can't see it. If you have ``gcc-7`` installed but the
build system complains it can't find it, the following might do the trick:

.. code-block:: bash

    sudo ln -s /usr/bin/gcc-7  /usr/local/cuda-10.2/bin/gcc
    sudo ln -s /usr/bin/g++-7  /usr/local/cuda-10.2/bin/g++


Here, we are making a symlink to ``gcc-7`` from ``/usr/local/cuda-10.2/bin/gcc`` and since
``/usr/local/cuda-10.2/bin/`` should be in the ``PATH`` environment variable (see the previous problem's solution), it
should find ``gcc-7`` (and ``g++7``) and then the build will succeed.

As always make sure to edit the paths in the example to match your situation.

**If still unsuccessful:**

If after addressing these you still encounter build issues, please, proceed with the GitHub Issue of `FairScale
<https://github.com/facebookresearch/fairscale/issues>`__ and `Deepspeed
<https://github.com/microsoft/DeepSpeed/issues>`__, depending on the project you have the problem with.

235
236
237
238
239
240
241
242
243
244

FairScale
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

By integrating `FairScale <https://github.com/facebookresearch/fairscale/>`__ the :class:`~transformers.Trainer`
provides support for the following features from `the ZeRO paper <https://arxiv.org/abs/1910.02054>`__:

1. Optimizer State Sharding
2. Gradient Sharding

245
246
You will need at least two GPUs to use this feature.

247
248
249
250
251
252
253
254
To deploy this feature:

1. Install the library via pypi:

   .. code-block:: bash

       pip install fairscale

255
   or find more details on `the FairScale's GitHub page
256
257
258
259
260
   <https://github.com/facebookresearch/fairscale/#installation>`__.

2. Add ``--sharded_ddp`` to the command line arguments, and make sure you have added the distributed launcher ``-m
   torch.distributed.launch --nproc_per_node=NUMBER_OF_GPUS_YOU_HAVE`` if you haven't been using it already.

261
For example here is how you could use it for ``run_seq2seq.py`` with 2 GPUs:
262
263
264

.. code-block:: bash

265
266
    python -m torch.distributed.launch --nproc_per_node=2 examples/seq2seq/run_seq2seq.py \
    --model_name_or_path t5-small --per_device_train_batch_size 1   \
267
    --output_dir output_dir --overwrite_output_dir \
268
269
270
    --do_train --max_train_samples 500 --num_train_epochs 1 \
    --dataset_name wmt16 --dataset_config "ro-en" \
    --task translation_en_to_ro --source_prefix "translate English to Romanian: " \
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    --fp16 --sharded_ddp

Notes:

- This feature requires distributed training (so multiple GPUs).
- It is not implemented for TPUs.
- It works with ``--fp16`` too, to make things even faster.
- One of the main benefits of enabling ``--sharded_ddp`` is that it uses a lot less GPU memory, so you should be able
  to use significantly larger batch sizes using the same hardware (e.g. 3x and even bigger) which should lead to
  significantly shorter training time.


DeepSpeed
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

`DeepSpeed <https://github.com/microsoft/DeepSpeed>`__ implements everything described in the `ZeRO paper
<https://arxiv.org/abs/1910.02054>`__, except ZeRO's stage 3. "Parameter Partitioning (Pos+g+p)". Currently it provides
full support for:

1. Optimizer State Partitioning (ZeRO stage 1)
2. Add Gradient Partitioning (ZeRO stage 2)
292
293
294
295
296
297
298
299
300
301
3. Custom fp16 handling
4. A range of fast Cuda-extension-based Optimizers
5. ZeRO-Offload

ZeRO-Offload has its own dedicated paper: `ZeRO-Offload: Democratizing Billion-Scale Model Training
<https://arxiv.org/abs/2101.06840>`__.

DeepSpeed is currently used only for training, as all the currently available features are of no use to inference.


302

303
304
Installation
=======================================================================================================================
305

306
Install the library via pypi:
307

308
.. code-block:: bash
309

310
    pip install deepspeed
311

312
or find more details on `the DeepSpeed's GitHub page <https://github.com/microsoft/deepspeed#installation>`__.
313

314
315
Deployment with multiple GPUs
=======================================================================================================================
316

317
318
To deploy this feature with multiple GPUs adjust the :class:`~transformers.Trainer` command line arguments as
following:
319

320
321
322
1. replace ``python -m torch.distributed.launch`` with ``deepspeed``.
2. add a new argument ``--deepspeed ds_config.json``, where ``ds_config.json`` is the DeepSpeed configuration file as
   documented `here <https://www.deepspeed.ai/docs/config-json/>`__. The file naming is up to you.
323

324
Therefore, if your original command line looked as following:
325

326
.. code-block:: bash
327

328
    python -m torch.distributed.launch --nproc_per_node=2 your_program.py <normal cl args>
329

330
Now it should be:
331

332
.. code-block:: bash
333

334
    deepspeed --num_gpus=2 your_program.py <normal cl args> --deepspeed ds_config.json
335

336
337
338
339
Unlike, ``torch.distributed.launch`` where you have to specify how many GPUs to use with ``--nproc_per_node``, with the
``deepspeed`` launcher you don't have to use the corresponding ``--num_gpus`` if you want all of your GPUs used. The
full details on how to configure various nodes and GPUs can be found `here
<https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node>`__.
340

341
342
343
344
345
In fact, you can continue using ``-m torch.distributed.launch`` with DeepSpeed as long as you don't need to use
``deepspeed`` launcher-specific arguments. Typically if you don't need a multi-node setup you're not required to use
the ``deepspeed`` launcher. But since in the DeepSpeed documentation it'll be used everywhere, for consistency we will
use it here as well.

346
Here is an example of running ``run_seq2seq.py`` under DeepSpeed deploying all available GPUs:
347
348
349

.. code-block:: bash

350
351
352
353
354
355
356
357
    deepspeed examples/seq2seq/run_seq2seq.py \
    --deepspeed examples/tests/deepspeed/ds_config.json \
    --model_name_or_path t5-small --per_device_train_batch_size 1   \
    --output_dir output_dir --overwrite_output_dir --fp16 \
    --do_train --max_train_samples 500 --num_train_epochs 1 \
    --dataset_name wmt16 --dataset_config "ro-en" \
    --task translation_en_to_ro --source_prefix "translate English to Romanian: "

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

Note that in the DeepSpeed documentation you are likely to see ``--deepspeed --deepspeed_config ds_config.json`` - i.e.
two DeepSpeed-related arguments, but for the sake of simplicity, and since there are already so many arguments to deal
with, we combined the two into a single argument.

For some practical usage examples, please, see this `post
<https://github.com/huggingface/transformers/issues/8771#issuecomment-759248400>`__.



Deployment with one GPU
=======================================================================================================================

To deploy DeepSpeed with one GPU adjust the :class:`~transformers.Trainer` command line arguments as following:

.. code-block:: bash

375
376
377
378
379
380
381
    deepspeed --num_gpus=1 examples/seq2seq/run_seq2seq.py \
    --deepspeed examples/tests/deepspeed/ds_config.json \
    --model_name_or_path t5-small --per_device_train_batch_size 1   \
    --output_dir output_dir --overwrite_output_dir --fp16 \
    --do_train --max_train_samples 500 --num_train_epochs 1 \
    --dataset_name wmt16 --dataset_config "ro-en" \
    --task translation_en_to_ro --source_prefix "translate English to Romanian: "
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

This is almost the same as with multiple-GPUs, but here we tell DeepSpeed explicitly to use just one GPU. By default,
DeepSpeed deploys all GPUs it can see. If you have only 1 GPU to start with, then you don't need this argument. The
following `documentation <https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node>`__ discusses the
launcher options.

Why would you want to use DeepSpeed with just one GPU?

1. It has a ZeRO-offload feature which can delegate some computations and memory to the host's CPU and RAM, and thus
   leave more GPU resources for model's needs - e.g. larger batch size, or enabling a fitting of a very big model which
   normally won't fit.
2. It provides a smart GPU memory management system, that minimizes memory fragmentation, which again allows you to fit
   bigger models and data batches.

While we are going to discuss the configuration in details next, the key to getting a huge improvement on a single GPU
with DeepSpeed is to have at least the following configuration in the configuration file:

.. code-block:: json
400

401
402
403
404
405
406
407
408
409
410
411
412
  {
    "zero_optimization": {
       "stage": 2,
       "allgather_partitions": true,
       "allgather_bucket_size": 2e8,
       "reduce_scatter": true,
       "reduce_bucket_size": 2e8,
       "overlap_comm": true,
       "contiguous_gradients": true,
       "cpu_offload": true
    },
  }
413

414
415
which enables ``cpu_offload`` and some other important features. You may experiment with the buffer sizes, you will
find more details in the discussion below.
416

417
418
For a practical usage example of this type of deployment, please, see this `post
<https://github.com/huggingface/transformers/issues/8771#issuecomment-759176685>`__.
419

420
421
422
423
424
425
426
Notes:

- if you need to run on a specific GPU, which is different from GPU 0, you can't use ``CUDA_VISIBLE_DEVICES`` to limit
  the visible scope of available GPUs. Instead, you have to use the following syntax:

   .. code-block:: bash

427
       deepspeed --include localhost:1 examples/seq2seq/run_seq2seq.py ...
428

429
   In this example, we tell DeepSpeed to use GPU 1 (second gpu).
430
431


432
433
434
435

Deployment in Notebooks
=======================================================================================================================

436
437
The problem with running notebook cells as a script is that there is no normal ``deepspeed`` launcher to rely on, so
under certain setups we have to emulate it.
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

Here is how you'd have to adjust your training code in the notebook to use DeepSpeed.

.. code-block:: python

    # DeepSpeed requires a distributed environment even when only one process is used.
    # This emulates a launcher in the notebook
    import os
    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '9994' # modify if RuntimeError: Address already in use
    os.environ['RANK'] = "0"
    os.environ['LOCAL_RANK'] = "0"
    os.environ['WORLD_SIZE'] = "1"

    # Now proceed as normal, plus pass the deepspeed config file
    training_args = TrainingArguments(..., deepspeed="ds_config.json")
    trainer = Trainer(...)
    trainer.train()

Note: `...` stands for the normal arguments that you'd pass to the functions.

If you want to create the config file on the fly in the notebook in the current directory, you could have a dedicated
cell with:

.. code-block:: python

    %%bash
    cat <<'EOT' > ds_config.json
    {
        "fp16": {
            "enabled": true,
            "loss_scale": 0,
            "loss_scale_window": 1000,
            "hysteresis": 2,
            "min_loss_scale": 1
        },

        "zero_optimization": {
            "stage": 2,
            "allgather_partitions": true,
            "allgather_bucket_size": 2e8,
            "overlap_comm": true,
            "reduce_scatter": true,
            "reduce_bucket_size": 2e8,
            "contiguous_gradients": true,
            "cpu_offload": true
        },

        "zero_allow_untested_optimizer": true,

        "optimizer": {
            "type": "AdamW",
            "params": {
                "lr": 3e-5,
                "betas": [0.8, 0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },

        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 3e-5,
                "warmup_num_steps": 500
            }
        },

        "steps_per_print": 2000,
        "wall_clock_breakdown": false
    }
    EOT


513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
That's said if the script is not in the notebook cells, you can launch ``deepspeed`` normally via shell from a cell
with:

.. code-block::

   !deepspeed examples/seq2seq/run_seq2seq.py ...

or with bash magic, where you can write a multi-line code for the shell to run:

.. code-block::

   %%bash

   cd /somewhere
   deepspeed examples/seq2seq/run_seq2seq.py ...



531

532
533
Configuration
=======================================================================================================================
534
535
536
537

For the complete guide to the DeepSpeed configuration options that can be used in its configuration file please refer
to the `following documentation <https://www.deepspeed.ai/docs/config-json/>`__.

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
You can find dozens of DeepSpeed configuration examples that address various practical needs in `the DeepSpeedExamples
repo <https://github.com/microsoft/DeepSpeedExamples>`__:

.. code-block:: bash

  git clone https://github.com/microsoft/DeepSpeedExamples
  cd DeepSpeedExamples
  find . -name '*json'

Continuing the code from above, let's say you're looking to configure the Lamb optimizer. So you can search through the
example ``.json`` files with:

.. code-block:: bash

  grep -i Lamb $(find . -name '*json')

Some more examples are to be found in the `main repo <https://github.com/microsoft/DeepSpeed>`__ as well.

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
While you always have to supply the DeepSpeed configuration file, you can configure the DeepSpeed integration in
several ways:

1. Supply most of the configuration inside the file, and just use a few required command line arguments. This is the
   recommended way as it puts most of the configuration params in one place.
2. Supply just the ZeRO configuration params inside the file, and configure the rest using the normal
   :class:`~transformers.Trainer` command line arguments.
3. Any variation of the first two ways.

To get an idea of what DeepSpeed configuration file looks like, here is one that activates ZeRO stage 2 features,
enables FP16, uses AdamW optimizer and WarmupLR scheduler:

.. code-block:: json

    {
        "fp16": {
            "enabled": true,
            "loss_scale": 0,
            "loss_scale_window": 1000,
            "hysteresis": 2,
            "min_loss_scale": 1
        },

       "zero_optimization": {
           "stage": 2,
           "allgather_partitions": true,
           "allgather_bucket_size": 5e8,
           "overlap_comm": true,
           "reduce_scatter": true,
           "reduce_bucket_size": 5e8,
           "contiguous_gradients": true,
           "cpu_offload": true
       },

       "optimizer": {
         "type": "AdamW",
         "params": {
           "lr": 3e-5,
           "betas": [ 0.8, 0.999 ],
           "eps": 1e-8,
           "weight_decay": 3e-7
         }
       },
       "zero_allow_untested_optimizer": true,

       "scheduler": {
         "type": "WarmupLR",
         "params": {
           "warmup_min_lr": 0,
           "warmup_max_lr": 3e-5,
           "warmup_num_steps": 500
         }
       }
    }

If you already have a command line that you have been using with :class:`transformers.Trainer` args, you can continue
using those and the :class:`~transformers.Trainer` will automatically convert them into the corresponding DeepSpeed
configuration at run time. For example, you could use the following configuration file:

.. code-block:: json

    {
       "zero_optimization": {
           "stage": 2,
           "allgather_partitions": true,
           "allgather_bucket_size": 5e8,
           "overlap_comm": true,
           "reduce_scatter": true,
           "reduce_bucket_size": 5e8,
           "contiguous_gradients": true,
           "cpu_offload": true
       }
    }

and the following command line arguments:

.. code-block:: bash

    --learning_rate 3e-5 --warmup_steps 500 --adam_beta1 0.8 --adam_beta2 0.999 --adam_epsilon 1e-8 \
    --weight_decay 3e-7 --lr_scheduler_type constant_with_warmup --fp16 --fp16_backend amp

to achieve the same configuration as provided by the longer json file in the first example.

When you execute the program, DeepSpeed will log the configuration it received from the :class:`~transformers.Trainer`
to the console, so you can see exactly what the final configuration was passed to it.

642
643
Shared Configuration
=======================================================================================================================
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

Some configuration information is required by both the :class:`~transformers.Trainer` and DeepSpeed to function
correctly, therefore, to prevent conflicting definitions, which could lead to hard to detect errors, we chose to
configure those via the :class:`~transformers.Trainer` command line arguments.

Therefore, the following DeepSpeed configuration params shouldn't be used with the :class:`~transformers.Trainer`:

* ``train_batch_size``
* ``train_micro_batch_size_per_gpu``
* ``gradient_accumulation_steps``

as these will be automatically derived from the run time environment and the following 2 command line arguments:

.. code-block:: bash

    --per_device_train_batch_size 8 --gradient_accumulation_steps 2

which are always required to be supplied.

Of course, you will need to adjust the values in this example to your situation.



667
668
ZeRO
=======================================================================================================================
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

The ``zero_optimization`` section of the configuration file is the most important part (`docs
<https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training>`__), since that is where you define
which ZeRO stages you want to enable and how to configure them.

.. code-block:: json

    {
       "zero_optimization": {
           "stage": 2,
           "allgather_partitions": true,
           "allgather_bucket_size": 5e8,
           "overlap_comm": true,
           "reduce_scatter": true,
           "reduce_bucket_size": 5e8,
           "contiguous_gradients": true,
           "cpu_offload": true
       }
    }

Notes:

- enabling ``cpu_offload`` should reduce GPU RAM usage (it requires ``"stage": 2``)
- ``"overlap_comm": true`` trades off increased GPU RAM usage to lower all-reduce latency. ``overlap_comm`` uses 4.5x
  the ``allgather_bucket_size`` and ``reduce_bucket_size`` values. So if they are set to 5e8, this requires a 9GB
  footprint (``5e8 x 2Bytes x 2 x 4.5``). Therefore, if you have a GPU with 8GB or less RAM, to avoid getting
695
696
697
698
699
  OOM-errors you will need to reduce those parameters to about ``2e8``, which would require 3.6GB. You will want to do
  the same on larger capacity GPU as well, if you're starting to hit OOM.
- when reducing these buffers you're trading communication speed to avail more GPU RAM. The smaller the buffer size,
  the slower the communication, and the more GPU RAM will be available to other tasks. So if a bigger batch size is
  important, getting a slightly slower training time could be a good trade.
700
701
702
703
704
705

This section has to be configured exclusively via DeepSpeed configuration - the :class:`~transformers.Trainer` provides
no equivalent command line arguments.



706
707
Optimizer
=======================================================================================================================
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741


DeepSpeed's main optimizers are Adam, OneBitAdam, and Lamb. These have been thoroughly tested with ZeRO and are thus
recommended to be used. It, however, can import other optimizers from ``torch``. The full documentation is `here
<https://www.deepspeed.ai/docs/config-json/#optimizer-parameters>`__.

If you don't configure the ``optimizer`` entry in the configuration file, the :class:`~transformers.Trainer` will
automatically set it to ``AdamW`` and will use the supplied values or the defaults for the following command line
arguments: ``--learning_rate``, ``--adam_beta1``, ``--adam_beta2``, ``--adam_epsilon`` and ``--weight_decay``.

Here is an example of the pre-configured ``optimizer`` entry for AdamW:

.. code-block:: json

    {
       "zero_allow_untested_optimizer": true,
       "optimizer": {
           "type": "AdamW",
           "params": {
             "lr": 0.001,
             "betas": [0.8, 0.999],
             "eps": 1e-8,
             "weight_decay": 3e-7
           }
         }
    }

Since AdamW isn't on the list of tested with DeepSpeed/ZeRO optimizers, we have to add
``zero_allow_untested_optimizer`` flag.

If you want to use one of the officially supported optimizers, configure them explicitly in the configuration file, and
make sure to adjust the values. e.g. if use Adam you will want ``weight_decay`` around ``0.01``.


742
743
Scheduler
=======================================================================================================================
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

DeepSpeed supports LRRangeTest, OneCycle, WarmupLR and WarmupDecayLR LR schedulers. The full documentation is `here
<https://www.deepspeed.ai/docs/config-json/#scheduler-parameters>`__.

If you don't configure the ``scheduler`` entry in the configuration file, the :class:`~transformers.Trainer` will use
the value of ``--lr_scheduler_type`` to configure it. Currently the :class:`~transformers.Trainer` supports only 2 LR
schedulers that are also supported by DeepSpeed:

* ``WarmupLR`` via ``--lr_scheduler_type constant_with_warmup``
* ``WarmupDecayLR`` via ``--lr_scheduler_type linear``. This is also the default value for ``--lr_scheduler_type``,
  therefore, if you don't configure the scheduler this is scheduler that will get configured by default.

In either case, the values of ``--learning_rate`` and ``--warmup_steps`` will be used for the configuration.

In other words, if you don't use the configuration file to set the ``scheduler`` entry, provide either:

.. code-block:: bash

    --lr_scheduler_type constant_with_warmup --learning_rate 3e-5 --warmup_steps 500

or

.. code-block:: bash

    --lr_scheduler_type linear --learning_rate 3e-5 --warmup_steps 500

with the desired values. If you don't pass these arguments, reasonable default values will be used instead.

In the case of WarmupDecayLR ``total_num_steps`` gets set either via the ``--max_steps`` command line argument, or if
it is not provided, derived automatically at run time based on the environment and the size of the dataset and other
command line arguments.

Here is an example of the pre-configured ``scheduler`` entry for WarmupLR (``constant_with_warmup`` in the
:class:`~transformers.Trainer` API):

.. code-block:: json

    {
       "scheduler": {
             "type": "WarmupLR",
             "params": {
                 "warmup_min_lr": 0,
                 "warmup_max_lr": 0.001,
                 "warmup_num_steps": 1000
             }
         }
    }

792
793
Automatic Mixed Precision
=======================================================================================================================
794
795
796
797
798
799
800

You can work with FP16 in one of the following ways:

1. Pytorch native amp, as documented `here <https://www.deepspeed.ai/docs/config-json/#fp16-training-options>`__.
2. NVIDIA's apex, as documented `here
   <https://www.deepspeed.ai/docs/config-json/#automatic-mixed-precision-amp-training-options>`__.

801
If you want to use an equivalent of the Pytorch native amp, you can either configure the ``fp16`` entry in the
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
configuration file, or use the following command line arguments: ``--fp16 --fp16_backend amp``.

Here is an example of the ``fp16`` configuration:

.. code-block:: json

    {
        "fp16": {
            "enabled": true,
            "loss_scale": 0,
            "loss_scale_window": 1000,
            "hysteresis": 2,
            "min_loss_scale": 1
        },
    }

If you want to use NVIDIA's apex instead, you can can either configure the ``amp`` entry in the configuration file, or
use the following command line arguments: ``--fp16 --fp16_backend apex --fp16_opt_level 01``.

Here is an example of the ``amp`` configuration:

.. code-block:: json

    {
        "amp": {
            "enabled": true,
            "opt_level": "O1"
        }
    }



834
835
Gradient Clipping
=======================================================================================================================
836
837
838
839
840
841
842
843
844
845
846
847
848
849

If you don't configure the ``gradient_clipping`` entry in the configuration file, the :class:`~transformers.Trainer`
will use the value of the ``--max_grad_norm`` command line argument to set it.

Here is an example of the ``gradient_clipping`` configuration:

.. code-block:: json

    {
        "gradient_clipping": 1.0,
    }



850
851
Notes
=======================================================================================================================
852
853
854
855
856
857
858
859
860

* DeepSpeed works with the PyTorch :class:`~transformers.Trainer` but not TF :class:`~transformers.TFTrainer`.
* While DeepSpeed has a pip installable PyPI package, it is highly recommended that it gets installed from `source
  <https://github.com/microsoft/deepspeed#installation>`__ to best match your hardware and also if you need to enable
  certain features, like 1-bit Adam, which aren't available in the pypi distribution.
* You don't have to use the :class:`~transformers.Trainer` to use DeepSpeed with HuggingFace ``transformers`` - you can
  use any model with your own trainer, and you will have to adapt the latter according to `the DeepSpeed integration
  instructions <https://www.deepspeed.ai/getting-started/#writing-deepspeed-models>`__.

861
862
Main DeepSpeed Resources
=======================================================================================================================
863

864
- `Project's github <https://github.com/microsoft/deepspeed>`__
865
866
- `Usage docs <https://www.deepspeed.ai/getting-started/>`__
- `API docs <https://deepspeed.readthedocs.io/en/latest/index.html>`__
867
- `Blog posts <https://www.microsoft.com/en-us/research/search/?q=deepspeed>`__
868

869
870
871
872
873
Papers:

- `ZeRO: Memory Optimizations Toward Training Trillion Parameter Models <https://arxiv.org/abs/1910.02054>`__
- `ZeRO-Offload: Democratizing Billion-Scale Model Training <https://arxiv.org/abs/2101.06840>`__

874
Finally, please, remember that, HuggingFace :class:`~transformers.Trainer` only integrates DeepSpeed, therefore if you
875
have any problems or questions with regards to DeepSpeed usage, please, file an issue with `DeepSpeed GitHub
876
<https://github.com/microsoft/DeepSpeed/issues>`__.