trainer.rst 3.41 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Trainer
-----------------------------------------------------------------------------------------------------------------------

The :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` classes provide an API for feature-complete
training in most standard use cases. It's used in most of the :doc:`example scripts <../examples>`.

Before instantiating your :class:`~transformers.Trainer`/:class:`~transformers.TFTrainer`, create a 
:class:`~transformers.TrainingArguments`/:class:`~transformers.TFTrainingArguments` to access all the points of
customization during training.

The API supports distributed training on multiple GPUs/TPUs, mixed precision through `NVIDIA Apex
<https://github.com/NVIDIA/apex>`__ for PyTorch and :obj:`tf.keras.mixed_precision` for TensorFlow.

Both :class:`~transformers.Trainer` and :class:`~transformers.TFTrainer` contain the basic training loop supporting the
previous features. To inject custom behavior you can subclass them and override the following methods:

- **get_train_dataloader**/**get_train_tfdataset** -- Creates the training DataLoader (PyTorch) or TF Dataset.
- **get_eval_dataloader**/**get_eval_tfdataset** -- Creates the evaulation DataLoader (PyTorch) or TF Dataset.
- **get_test_dataloader**/**get_test_tfdataset** -- Creates the test DataLoader (PyTorch) or TF Dataset.
- **log** -- Logs information on the various objects watching training.
- **setup_wandb** -- Setups wandb (see `here <https://docs.wandb.com/huggingface>`__ for more information).
- **create_optimizer_and_scheduler** -- Setups the optimizer and learning rate scheduler if they were not passed at
  init.
- **compute_loss** - Computes the loss on a batch of training inputs.
- **training_step** -- Performs a training step.
- **prediction_step** -- Performs an evaluation/test step.
- **run_model** (TensorFlow only) -- Basic pass through the model.
- **evaluate** -- Runs an evaluation loop and returns metrics.
- **predict** -- Returns predictions (with metrics if labels are available) on a test set.

Here is an example of how to customize :class:`~transformers.Trainer` using a custom loss function:

.. code-block:: python

    from transformers import Trainer
    class MyTrainer(Trainer):
        def compute_loss(self, model, inputs):
            labels = inputs.pop("labels")
            outputs = models(**inputs)
            logits = outputs[0]
            return my_custom_loss(logits, labels)


Trainer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Trainer
    :members:

TFTrainer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFTrainer
    :members:

TrainingArguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TrainingArguments
    :members:

TFTrainingArguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFTrainingArguments
    :members:

Utilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.EvalPrediction

.. autofunction:: transformers.set_seed

.. autofunction:: transformers.torch_distributed_zero_first