run_ner.py 20.3 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27
28

import numpy as np
29
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
36
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
37
    HfArgumentParser,
38
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
44
from transformers.utils import check_min_version
Aymeric Augustin's avatar
Aymeric Augustin committed
45
46


47
48
49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.4.0.dev0")

50
51
52
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
53
54
55
56
57
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
58

Julien Chaumond's avatar
Julien Chaumond committed
59
60
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
61
    )
Julien Chaumond's avatar
Julien Chaumond committed
62
63
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
64
    )
Julien Chaumond's avatar
Julien Chaumond committed
65
66
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
67
    )
Julien Chaumond's avatar
Julien Chaumond committed
68
    cache_dir: Optional[str] = field(
69
70
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
71
    )
72
73
74
75
76
77
78
79
80
81
82
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
83
84


Julien Chaumond's avatar
Julien Chaumond committed
85
86
87
88
89
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
90

91
92
93
94
95
96
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
97
    )
98
99
100
101
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
102
        default=None,
103
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
104
    )
105
106
107
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
108
    )
Julien Chaumond's avatar
Julien Chaumond committed
109
110
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
111
    )
112
113
114
115
116
117
118
119
120
121
122
123
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
145
146
147
148
149
150
151
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
152
153
154
155
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
156
157
158
159
160
161
162
163
164
165
166
167

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
168

Julien Chaumond's avatar
Julien Chaumond committed
169
170
171
172
173
174
175

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
176
177
178
179
180
181
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
197

198
    # Setup logging
199
200
201
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
202
        handlers=[logging.StreamHandler(sys.stdout)],
203
    )
204
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
205
206

    # Log on each process the small summary:
207
    logger.warning(
208
209
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
210
    )
211
212
213
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
214
215
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
216
    logger.info("Training/evaluation parameters %s", training_args)
217

218
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
219
    set_seed(training_args.seed)
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
248
        features = datasets["train"].features
249
250
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
251
252
253
254
255
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (
        f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
    )
256

Sylvain Gugger's avatar
Sylvain Gugger committed
257
258
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
259
260
261
262
263
264
265
266
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
267
268
269
270
271
272
273
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
274
    num_labels = len(label_list)
275
276

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
277
278
279
280
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
281
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
282
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
283
        num_labels=num_labels,
284
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
285
        cache_dir=model_args.cache_dir,
286
287
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
288
    )
289
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
290
291
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
292
        use_fast=True,
293
294
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
295
    )
296
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
297
298
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
299
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
300
        cache_dir=model_args.cache_dir,
301
302
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
303
    )
304

305
306
307
308
309
310
311
312
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement"
        )

313
314
315
316
317
318
319
320
321
322
323
324
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
325
        )
326
        labels = []
327
328
329
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
330
            label_ids = []
331
332
333
334
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
335
                    label_ids.append(-100)
336
337
338
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
339
340
341
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
342
343
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
344
345
346
347
348

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict:
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
        test_dataset = datasets["test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )
Julien Chaumond's avatar
Julien Chaumond committed
387

388
    # Data collator
389
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
390

391
    # Metrics
392
393
    metric = load_metric("seqeval")

394
395
396
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
397

398
399
400
401
402
403
404
405
406
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
426
427
428
429
430

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
431
432
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
433
434
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
435
436
        compute_metrics=compute_metrics,
    )
437
438

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
439
    if training_args.do_train:
440
        if last_checkpoint is not None:
441
            checkpoint = last_checkpoint
442
        elif os.path.isdir(model_args.model_name_or_path):
443
            checkpoint = model_args.model_name_or_path
444
        else:
445
446
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
447
        metrics = train_result.metrics
448
        trainer.save_model()  # Saves the tokenizer too for easy upload
449

450
451
452
453
454
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

455
456
457
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
458

459
    # Evaluation
460
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
461
462
        logger.info("*** Evaluate ***")

463
464
465
466
        metrics = trainer.evaluate()

        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
467

468
469
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
470
471

    # Predict
472
    if training_args.do_predict:
473
474
475
476
        logger.info("*** Predict ***")

        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
477

478
479
480
481
482
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
483

484
485
        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
486

487
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
488
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
489
        if trainer.is_world_process_zero():
490
            with open(output_test_predictions_file, "w") as writer:
491
492
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
493

494

495
496
497
498
499
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


500
501
if __name__ == "__main__":
    main()