run_ner.py 20.1 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27
28

import numpy as np
29
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
36
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
37
    HfArgumentParser,
38
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
44
45


46
47
48
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
49
50
51
52
53
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
54

Julien Chaumond's avatar
Julien Chaumond committed
55
56
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
57
    )
Julien Chaumond's avatar
Julien Chaumond committed
58
59
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
60
    )
Julien Chaumond's avatar
Julien Chaumond committed
61
62
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
63
    )
Julien Chaumond's avatar
Julien Chaumond committed
64
    cache_dir: Optional[str] = field(
65
66
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
67
    )
68
69
70
71
72
73
74
75
76
77
78
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
79
80


Julien Chaumond's avatar
Julien Chaumond committed
81
82
83
84
85
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
86

87
88
89
90
91
92
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
93
    )
94
95
96
97
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
98
        default=None,
99
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
100
    )
101
102
103
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
104
    )
Julien Chaumond's avatar
Julien Chaumond committed
105
106
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
107
    )
108
109
110
111
112
113
114
115
116
117
118
119
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_val_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
            "value if set."
        },
    )
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
141
142
143
144
145
146
147
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
148
149
150
151
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
152
153
154
155
156
157
158
159
160
161
162
163

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
164

Julien Chaumond's avatar
Julien Chaumond committed
165
166
167
168
169
170
171

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
172
173
174
175
176
177
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
193

194
    # Setup logging
195
196
197
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
198
        handlers=[logging.StreamHandler(sys.stdout)],
199
    )
200
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
201
202

    # Log on each process the small summary:
203
    logger.warning(
204
205
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
206
    )
207
208
209
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
210
211
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
212
    logger.info("Training/evaluation parameters %s", training_args)
213

214
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
215
    set_seed(training_args.seed)
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
244
        features = datasets["train"].features
245
246
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
247
248
249
250
251
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (
        f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
    )
252

Sylvain Gugger's avatar
Sylvain Gugger committed
253
254
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
255
256
257
258
259
260
261
262
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
265
266
267
268
269
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
270
    num_labels = len(label_list)
271
272

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
273
274
275
276
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
277
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
278
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
279
        num_labels=num_labels,
280
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
281
        cache_dir=model_args.cache_dir,
282
283
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
284
    )
285
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
286
287
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
288
        use_fast=True,
289
290
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
291
    )
292
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
293
294
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
295
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
296
        cache_dir=model_args.cache_dir,
297
298
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
299
    )
300

301
302
303
304
305
306
307
308
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement"
        )

309
310
311
312
313
314
315
316
317
318
319
320
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
321
        )
322
        labels = []
323
324
325
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
326
            label_ids = []
327
328
329
330
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
331
                    label_ids.append(-100)
332
333
334
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
335
336
337
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
338
339
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
340
341
342
343
344

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict:
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
        test_dataset = datasets["test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )
Julien Chaumond's avatar
Julien Chaumond committed
383

384
    # Data collator
385
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
386

387
    # Metrics
388
389
    metric = load_metric("seqeval")

390
391
392
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
393

394
395
396
397
398
399
400
401
402
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
422
423
424
425
426

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
427
428
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
429
430
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
431
432
        compute_metrics=compute_metrics,
    )
433
434

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
435
    if training_args.do_train:
436
        if last_checkpoint is not None:
437
            checkpoint = last_checkpoint
438
        elif os.path.isdir(model_args.model_name_or_path):
439
            checkpoint = model_args.model_name_or_path
440
        else:
441
442
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
443
        metrics = train_result.metrics
444
        trainer.save_model()  # Saves the tokenizer too for easy upload
445

446
447
448
449
450
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

451
452
453
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
454

455
    # Evaluation
456
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
457
458
        logger.info("*** Evaluate ***")

459
460
461
462
        metrics = trainer.evaluate()

        max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
Julien Chaumond's avatar
Julien Chaumond committed
463

464
465
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
466
467

    # Predict
468
    if training_args.do_predict:
469
470
471
472
        logger.info("*** Predict ***")

        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
473

474
475
476
477
478
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
479

480
481
        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
482

483
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
484
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
485
        if trainer.is_world_process_zero():
486
            with open(output_test_predictions_file, "w") as writer:
487
488
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
489

490

491
492
493
494
495
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


496
497
if __name__ == "__main__":
    main()