run_ner.py 17.7 KB
Newer Older
1
#!/usr/bin/env python
2
# coding=utf-8
3
# Copyright 2020 The HuggingFace Team All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""
Fine-tuning the library models for token classification.
"""
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
21

22
23
import logging
import os
24
import sys
Julien Chaumond's avatar
Julien Chaumond committed
25
from dataclasses import dataclass, field
26
from typing import Optional
27
28

import numpy as np
29
from datasets import ClassLabel, load_dataset, load_metric
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
import transformers
Aymeric Augustin's avatar
Aymeric Augustin committed
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
36
    DataCollatorForTokenClassification,
Julien Chaumond's avatar
Julien Chaumond committed
37
    HfArgumentParser,
38
    PreTrainedTokenizerFast,
Julien Chaumond's avatar
Julien Chaumond committed
39
40
41
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
42
)
43
from transformers.trainer_utils import get_last_checkpoint, is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
44
45


46
47
48
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
49
50
51
52
53
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
54

Julien Chaumond's avatar
Julien Chaumond committed
55
56
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
57
    )
Julien Chaumond's avatar
Julien Chaumond committed
58
59
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
60
    )
Julien Chaumond's avatar
Julien Chaumond committed
61
62
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
63
    )
Julien Chaumond's avatar
Julien Chaumond committed
64
    cache_dir: Optional[str] = field(
65
66
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
67
    )
68
69
70
71
72
73
74
75
76
77
78
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
79
80


Julien Chaumond's avatar
Julien Chaumond committed
81
82
83
84
85
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
86

87
88
89
90
91
92
    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
93
    )
94
95
96
97
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
98
        default=None,
99
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
100
    )
101
102
103
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
104
    )
Julien Chaumond's avatar
Julien Chaumond committed
105
106
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
107
    )
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    label_all_tokens: bool = field(
        default=False,
        metadata={
            "help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
            "one (in which case the other tokens will have a padding index)."
        },
    )
127
128
129
130
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )
131
132
133
134
135
136
137
138
139
140
141
142

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()
143

Julien Chaumond's avatar
Julien Chaumond committed
144
145
146
147
148
149
150

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
151
152
153
154
155
156
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
172

173
    # Setup logging
174
175
176
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
177
        handlers=[logging.StreamHandler(sys.stdout)],
178
    )
179
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
180
181

    # Log on each process the small summary:
182
    logger.warning(
183
184
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
185
    )
186
187
188
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
189
190
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
191
    logger.info("Training/evaluation parameters %s", training_args)
192

193
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
194
    set_seed(training_args.seed)
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
223
        features = datasets["train"].features
224
225
    else:
        column_names = datasets["validation"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
226
227
228
229
230
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (
        f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
    )
231

Sylvain Gugger's avatar
Sylvain Gugger committed
232
233
    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
234
235
236
237
238
239
240
241
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
245
246
247
248
    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
249
    num_labels = len(label_list)
250
251

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
252
253
254
255
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
256
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
257
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
258
        num_labels=num_labels,
259
        finetuning_task=data_args.task_name,
Julien Chaumond's avatar
Julien Chaumond committed
260
        cache_dir=model_args.cache_dir,
261
262
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
263
    )
264
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
265
266
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
267
        use_fast=True,
268
269
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
270
    )
271
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
272
273
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
274
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
275
        cache_dir=model_args.cache_dir,
276
277
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
278
    )
279

280
281
282
283
284
285
286
287
    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this "
            "requirement"
        )

288
289
290
291
292
293
294
295
296
297
298
299
    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
Julien Chaumond's avatar
Julien Chaumond committed
300
        )
301
        labels = []
302
303
304
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
305
            label_ids = []
306
307
308
309
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
310
                    label_ids.append(-100)
311
312
313
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
314
315
316
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
317
318
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx
319
320
321
322
323
324
325
326
327
328

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    tokenized_datasets = datasets.map(
        tokenize_and_align_labels,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
Julien Chaumond's avatar
Julien Chaumond committed
329
330
    )

331
    # Data collator
332
    data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
Julien Chaumond's avatar
Julien Chaumond committed
333

334
    # Metrics
335
336
    metric = load_metric("seqeval")

337
338
339
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
340

341
342
343
344
345
346
347
348
349
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        results = metric.compute(predictions=true_predictions, references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }
Julien Chaumond's avatar
Julien Chaumond committed
369
370
371
372
373

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
374
375
376
377
        train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
        eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
378
379
        compute_metrics=compute_metrics,
    )
380
381

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
382
    if training_args.do_train:
383
        if last_checkpoint is not None:
384
            checkpoint = last_checkpoint
385
        elif os.path.isdir(model_args.model_name_or_path):
386
            checkpoint = model_args.model_name_or_path
387
        else:
388
389
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
390
        metrics = train_result.metrics
391
        trainer.save_model()  # Saves the tokenizer too for easy upload
392

393
394
395
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
396

397
398
    # Evaluation
    results = {}
399
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
400
401
        logger.info("*** Evaluate ***")

402
        results = trainer.evaluate()
Julien Chaumond's avatar
Julien Chaumond committed
403

404
405
        trainer.log_metrics("eval", results)
        trainer.save_metrics("eval", results)
Julien Chaumond's avatar
Julien Chaumond committed
406
407

    # Predict
408
    if training_args.do_predict:
409
410
        logger.info("*** Predict ***")

411
        test_dataset = tokenized_datasets["test"]
412
413
        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)
Julien Chaumond's avatar
Julien Chaumond committed
414

415
416
417
418
419
        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(prediction, label) if l != -100]
            for prediction, label in zip(predictions, labels)
        ]
Julien Chaumond's avatar
Julien Chaumond committed
420

421
422
        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)
Julien Chaumond's avatar
Julien Chaumond committed
423

424
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
425
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
426
        if trainer.is_world_process_zero():
427
            with open(output_test_predictions_file, "w") as writer:
428
429
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")
430

431
432
433
    return results


434
435
436
437
438
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


439
440
if __name__ == "__main__":
    main()