"tests/funnel/test_modeling_funnel.py" did not exist on "3e3e41ae20be8e0fd9dd077b61be724f1098d407"
test_modeling_vit.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViT model. """


import unittest

20
from transformers import ViTConfig
21
22
23
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
24
25
    require_torch_accelerator,
    require_torch_fp16,
26
27
28
29
    require_vision,
    slow,
    torch_device,
)
30
from transformers.utils import cached_property, is_torch_available, is_vision_available
31

Yih-Dar's avatar
Yih-Dar committed
32
33
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
34
from ...test_pipeline_mixin import PipelineTesterMixin
35
36
37
38


if is_torch_available():
    import torch
39
    from torch import nn
40

NielsRogge's avatar
NielsRogge committed
41
    from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
42
    from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
43
44
45
46
47


if is_vision_available():
    from PIL import Image

48
    from transformers import ViTImageProcessor
49
50
51
52
53
54
55
56
57
58
59
60
61


class ViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
62
        num_hidden_layers=2,
63
64
65
66
67
68
69
70
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        scope=None,
NielsRogge's avatar
NielsRogge committed
71
        encoder_stride=2,
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
90
        self.encoder_stride = encoder_stride
91

NielsRogge's avatar
NielsRogge committed
92
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
93
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
94
        self.seq_length = num_patches + 1
95

96
97
98
99
100
101
102
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

103
104
105
106
107
108
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
109
110
111
112
113
114
115
116
117
118
119
120
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
121
            encoder_stride=self.encoder_stride,
122
123
124
125
126
127
128
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ViTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
129
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
130

NielsRogge's avatar
NielsRogge committed
131
132
133
134
135
136
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = ViTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
137
            result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
NielsRogge's avatar
NielsRogge committed
138
139
140
141
142
143
144
145
146
147
        )

        # test greyscale images
        config.num_channels = 1
        model = ViTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
148
        self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
NielsRogge's avatar
NielsRogge committed
149

150
151
152
153
154
155
156
157
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
158
159
160
161
162
163
164
165
166
167
        # test greyscale images
        config.num_channels = 1
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

168
169
170
171
172
173
174
175
176
177
178
179
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
180
class ViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
181
182
183
184
185
186
187
188
189
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            ViTModel,
            ViTForImageClassification,
NielsRogge's avatar
NielsRogge committed
190
            ViTForMaskedImageModeling,
191
192
193
194
        )
        if is_torch_available()
        else ()
    )
195
196
197
198
199
    pipeline_model_mapping = (
        {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification}
        if is_torch_available()
        else {}
    )
200
    fx_compatible = True
201
202
203
204
205
206
207

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTModelTester(self)
NielsRogge's avatar
NielsRogge committed
208
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)
209
210

    def test_config(self):
NielsRogge's avatar
NielsRogge committed
211
        self.config_tester.run_common_tests()
212

NielsRogge's avatar
NielsRogge committed
213
    @unittest.skip(reason="ViT does not use inputs_embeds")
214
215
216
217
218
219
220
221
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
222
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
223
            x = model.get_output_embeddings()
224
            self.assertTrue(x is None or isinstance(x, nn.Linear))
225
226
227
228
229

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
230
231
232
233
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

234
235
236
237
238
239
240
241
242
243
244
245
246
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
247
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
248
249
250
    return image


251
@require_torch
252
253
254
@require_vision
class ViTModelIntegrationTest(unittest.TestCase):
    @cached_property
255
256
    def default_image_processor(self):
        return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None
257
258
259
260
261

    @slow
    def test_inference_image_classification_head(self):
        model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device)

262
        image_processor = self.default_image_processor
263
        image = prepare_img()
264
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
265
266

        # forward pass
267
268
        with torch.no_grad():
            outputs = model(**inputs)
269
270
271
272
273
274
275
276

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
277
278
279
280
281
282
283
284
285

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # ViT models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device)

286
        image_processor = ViTImageProcessor.from_pretrained("facebook/dino-vits8", size=480)
NielsRogge's avatar
NielsRogge committed
287
        image = prepare_img()
288
        inputs = image_processor(images=image, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values, interpolate_pos_encoding=True)

        # verify the logits
        expected_shape = torch.Size((1, 3601, 384))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
304
305
306

    @slow
    @require_accelerate
307
308
    @require_torch_accelerator
    @require_torch_fp16
309
310
311
312
313
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = ViTModel.from_pretrained("facebook/dino-vits8", torch_dtype=torch.float16, device_map="auto")
314
        image_processor = self.default_image_processor
315
316

        image = prepare_img()
317
        inputs = image_processor(images=image, return_tensors="pt")
318
319
320
321
322
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)