test_modeling_vit.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViT model. """


import inspect
import unittest

21
from transformers import ViTConfig
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
    require_torch_gpu,
    require_vision,
    slow,
    torch_device,
)
30
from transformers.utils import cached_property, is_torch_available, is_vision_available
31

Yih-Dar's avatar
Yih-Dar committed
32
33
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
34
35
36
37


if is_torch_available():
    import torch
38
    from torch import nn
39

NielsRogge's avatar
NielsRogge committed
40
    from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
41
    from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


class ViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        scope=None,
NielsRogge's avatar
NielsRogge committed
70
        encoder_stride=2,
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
89
        self.encoder_stride = encoder_stride
90

NielsRogge's avatar
NielsRogge committed
91
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
92
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
93
        self.seq_length = num_patches + 1
94

95
96
97
98
99
100
101
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

102
103
104
105
106
107
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
108
109
110
111
112
113
114
115
116
117
118
119
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
120
            encoder_stride=self.encoder_stride,
121
122
123
124
125
126
127
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ViTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
128
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
129

NielsRogge's avatar
NielsRogge committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = ViTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = ViTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))

149
150
151
152
153
154
155
156
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
157
158
159
160
161
162
163
164
165
166
        # test greyscale images
        config.num_channels = 1
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class ViTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            ViTModel,
            ViTForImageClassification,
NielsRogge's avatar
NielsRogge committed
189
            ViTForMaskedImageModeling,
190
191
192
193
        )
        if is_torch_available()
        else ()
    )
194
    fx_compatible = True
195
196
197
198
199
200
201

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTModelTester(self)
NielsRogge's avatar
NielsRogge committed
202
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)
203
204

    def test_config(self):
NielsRogge's avatar
NielsRogge committed
205
        self.config_tester.run_common_tests()
206

NielsRogge's avatar
NielsRogge committed
207
    @unittest.skip(reason="ViT does not use inputs_embeds")
208
209
210
211
212
213
214
215
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
216
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
217
            x = model.get_output_embeddings()
218
            self.assertTrue(x is None or isinstance(x, nn.Linear))
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
236
237
238
239
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

240
241
242
243
244
245
246
247
248
249
250
251
252
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
253
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
254
255
256
    return image


257
@require_torch
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
@require_vision
class ViTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
        model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
273
274
        with torch.no_grad():
            outputs = model(**inputs)
275
276
277
278
279
280
281
282

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # ViT models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device)

        feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/dino-vits8", size=480)
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values, interpolate_pos_encoding=True)

        # verify the logits
        expected_shape = torch.Size((1, 3601, 384))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

    @slow
    @require_accelerate
    @require_torch_gpu
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = ViTModel.from_pretrained("facebook/dino-vits8", torch_dtype=torch.float16, device_map="auto")
        feature_extractor = self.default_feature_extractor

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)