test_modeling_vit.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ViT model. """


import inspect
import unittest

21
from transformers import ViTConfig
22
23
24
25
26
27
28
29
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
    require_torch_gpu,
    require_vision,
    slow,
    torch_device,
)
30
from transformers.utils import cached_property, is_torch_available, is_vision_available
31

Yih-Dar's avatar
Yih-Dar committed
32
33
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
34
from ...test_pipeline_mixin import PipelineTesterMixin
35
36
37
38


if is_torch_available():
    import torch
39
    from torch import nn
40

NielsRogge's avatar
NielsRogge committed
41
    from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
42
    from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


class ViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        scope=None,
NielsRogge's avatar
NielsRogge committed
71
        encoder_stride=2,
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
90
        self.encoder_stride = encoder_stride
91

NielsRogge's avatar
NielsRogge committed
92
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
93
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
94
        self.seq_length = num_patches + 1
95

96
97
98
99
100
101
102
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

103
104
105
106
107
108
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
109
110
111
112
113
114
115
116
117
118
119
120
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
121
            encoder_stride=self.encoder_stride,
122
123
124
125
126
127
128
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = ViTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
129
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
130

NielsRogge's avatar
NielsRogge committed
131
132
133
134
135
136
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = ViTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
137
            result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
NielsRogge's avatar
NielsRogge committed
138
139
140
141
142
143
144
145
146
147
        )

        # test greyscale images
        config.num_channels = 1
        model = ViTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
148
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size))
NielsRogge's avatar
NielsRogge committed
149

150
151
152
153
154
155
156
157
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
158
159
160
161
162
163
164
165
166
167
        # test greyscale images
        config.num_channels = 1
        model = ViTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

168
169
170
171
172
173
174
175
176
177
178
179
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
180
class ViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
181
182
183
184
185
186
187
188
189
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            ViTModel,
            ViTForImageClassification,
NielsRogge's avatar
NielsRogge committed
190
            ViTForMaskedImageModeling,
191
192
193
194
        )
        if is_torch_available()
        else ()
    )
195
196
197
198
199
    pipeline_model_mapping = (
        {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification}
        if is_torch_available()
        else {}
    )
200
    fx_compatible = True
201
202
203
204
205
206
207

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = ViTModelTester(self)
NielsRogge's avatar
NielsRogge committed
208
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)
209
210

    def test_config(self):
NielsRogge's avatar
NielsRogge committed
211
        self.config_tester.run_common_tests()
212

NielsRogge's avatar
NielsRogge committed
213
    @unittest.skip(reason="ViT does not use inputs_embeds")
214
215
216
217
218
219
220
221
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
222
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
223
            x = model.get_output_embeddings()
224
            self.assertTrue(x is None or isinstance(x, nn.Linear))
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
242
243
244
245
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

246
247
248
249
250
251
252
253
254
255
256
257
258
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = ViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
259
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
260
261
262
    return image


263
@require_torch
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@require_vision
class ViTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
        model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
279
280
        with torch.no_grad():
            outputs = model(**inputs)
281
282
283
284
285
286
287
288

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # ViT models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device)

        feature_extractor = ViTFeatureExtractor.from_pretrained("facebook/dino-vits8", size=480)
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values, interpolate_pos_encoding=True)

        # verify the logits
        expected_shape = torch.Size((1, 3601, 384))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

    @slow
    @require_accelerate
    @require_torch_gpu
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = ViTModel.from_pretrained("facebook/dino-vits8", torch_dtype=torch.float16, device_map="auto")
        feature_extractor = self.default_feature_extractor

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt")
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)