test_modeling_flaubert.py 15.6 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre's avatar
Lysandre committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
import os
import tempfile
Lysandre's avatar
Lysandre committed
17
18
import unittest

19
from transformers import FlaubertConfig, is_torch_available
20
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
Lysandre's avatar
Lysandre committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre's avatar
Lysandre committed
24
25
26


if is_torch_available():
27
28
    import torch

Lysandre's avatar
Lysandre committed
29
    from transformers import (
30
        FlaubertForMultipleChoice,
Lysandre's avatar
Lysandre committed
31
32
33
        FlaubertForQuestionAnswering,
        FlaubertForQuestionAnsweringSimple,
        FlaubertForSequenceClassification,
34
        FlaubertForTokenClassification,
35
36
        FlaubertModel,
        FlaubertWithLMHeadModel,
Lysandre's avatar
Lysandre committed
37
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
39
40


41
42
class FlaubertModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 12
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = None
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
77
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
96
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        config = self.get_config()

        return (
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            choice_labels,
            input_mask,
        )

    def get_config(self):
        return FlaubertConfig(
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
Lysandre's avatar
Lysandre committed
130
131
        )

132
133
134
135
136
137
138
139
140
    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
141
        choice_labels,
142
143
144
145
146
        input_mask,
    ):
        model = FlaubertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
150
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
151
152
153
154
155
156
157
158
159
160

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
161
        choice_labels,
162
163
164
165
166
167
        input_mask,
    ):
        model = FlaubertWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
169
170
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
171
172
173
174
175
176
177
178
179
180

    def create_and_check_flaubert_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
181
        choice_labels,
182
183
184
185
186
187
        input_mask,
    ):
        model = FlaubertForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
188
        result = model(input_ids)
189

Sylvain Gugger's avatar
Sylvain Gugger committed
190
        result = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
191
192
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
193
194
195
196
197
198
199
200
201
202

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
203
        choice_labels,
204
205
206
207
208
209
        input_mask,
    ):
        model = FlaubertForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
210
        result = model(input_ids)
211

Sylvain Gugger's avatar
Sylvain Gugger committed
212
        result_with_labels = model(
Lysandre's avatar
Style  
Lysandre committed
213
            input_ids,
214
215
216
217
218
219
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
Lysandre's avatar
Lysandre committed
220

Sylvain Gugger's avatar
Sylvain Gugger committed
221
        result_with_labels = model(
222
223
224
225
226
227
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
Lysandre's avatar
Lysandre committed
228

Sylvain Gugger's avatar
Sylvain Gugger committed
229
        (total_loss,) = result_with_labels.to_tuple()
Lysandre's avatar
Lysandre committed
230

Sylvain Gugger's avatar
Sylvain Gugger committed
231
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Lysandre's avatar
Lysandre committed
232

Sylvain Gugger's avatar
Sylvain Gugger committed
233
        (total_loss,) = result_with_labels.to_tuple()
234

Stas Bekman's avatar
Stas Bekman committed
235
236
237
238
239
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
240
        )
Stas Bekman's avatar
Stas Bekman committed
241
242
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
243
        )
Stas Bekman's avatar
Stas Bekman committed
244
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
245
246
247
248
249
250
251
252
253
254

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
255
        choice_labels,
256
257
258
259
260
261
        input_mask,
    ):
        model = FlaubertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
262
263
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
264

Stas Bekman's avatar
Stas Bekman committed
265
266
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
267

268
269
270
271
272
273
274
275
276
    def create_and_check_flaubert_token_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
277
        choice_labels,
278
279
280
281
282
283
284
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = FlaubertForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
285
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
286
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    def create_and_check_flaubert_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = FlaubertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
307
        result = model(
308
309
310
311
312
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
313
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
314

315
316
317
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
Lysandre's avatar
Style  
Lysandre committed
318
319
320
321
322
323
324
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
325
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
326
            input_mask,
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            FlaubertModel,
            FlaubertWithLMHeadModel,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
342
            FlaubertForTokenClassification,
343
            FlaubertForMultipleChoice,
344
345
346
347
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    # Flaubert has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "FlaubertForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

Lysandre's avatar
Lysandre committed
364
    def setUp(self):
365
        self.model_tester = FlaubertModelTester(self)
Lysandre's avatar
Lysandre committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_simple_qa(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

391
392
393
394
    def test_flaubert_token_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_token_classif(*config_and_inputs)

395
396
397
398
    def test_flaubert_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
399
400
    @slow
    def test_model_from_pretrained(self):
401
        for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
402
            model = FlaubertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
403
            self.assertIsNotNone(model)
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    @slow
    @require_torch_gpu
    def test_torchscript_device_change(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:

            # FlauBertForMultipleChoice behaves incorrectly in JIT environments.
            if model_class == FlaubertForMultipleChoice:
                return

            config.torchscript = True
            model = model_class(config=config)

            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            traced_model = torch.jit.trace(
                model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
            )

            with tempfile.TemporaryDirectory() as tmp:
                torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt"))
                loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device)
                loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

@require_torch
class FlaubertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]
        )

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))